تاثیر اندازه و شدت جهش های قیمتی در پیش بینی تلاطم شاخص در بورس اوراق بهادار تهران
محورهای موضوعی :
دانش سرمایهگذاری
محسن رجب بلوکات
1
,
علی باغانی
2
,
علی نجفی مقدم
3
,
فاطمه صراف
4
,
نوروز نوراله زاده
5
1 - دانشجوی دکتری مدیریت مالی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
3 - استادیار گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
4 - استادیار گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
5 - استادیار گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
تاریخ دریافت : 1400/01/25
تاریخ پذیرش : 1400/04/01
تاریخ انتشار : 1403/07/01
کلید واژه:
جهش,
پیش بینی,
فرآیند هاکس,
تلاطم محقق شده,
چکیده مقاله :
تشخیص چگونگی ایجاد تلاطم در بازده دارایی از اهمیت بالایی برخوردار است. به همین دلیل، در سالهای اخیر، مطالعات شناخت تلاطم محقق شده و مقادیر فراوانی تلاطم روزانه توسعه یافته است. این پژوهش با استفاده از قیمت سهام شرکتهای شاخص 30 شرکت بزرگ بورس اوراق بهادار تهران در طول سالهای 1390 تا 1394 و محاسبه تلاطم محقق شده سهام در طول روزهای معاملاتی با استفاده از مدل HAR-CJ، به بررسی تاثیر اندازه و شدت جهشهای قیمتی در پیش بینی تلاطم شاخص پرداخته است. نتایج به دست آمده، نشان داد که توسعه مدلهایHAR-CJ و HAR-RV-CJ با استفاده از اندازه و شدت جهش ، تاثیر قابل ملاحظهای در بهبود پیش بینی تلاطم شاخص نداشته بلکه، به مقدار ناچیزی، عملکرد پیش بینی مدل در رابطه با تلاطم شاخص را تعدیل مینماید. همچنین، استفاده از جهش در طول روز به جای جهش روزانه، عملکرد مدل پیش بینی را بهبود نمیبخشد.
چکیده انگلیسی:
It is very important to distinguish how the volatility in the return of assets occur. For this reason, in recent years, realized volatility and frequencies of daily volatility recognition studies have been developed. This study uses stock prices of 30 big companies of Tehran Stock Exchange during the years 1390 (2011) to 1394 (2016) and calculates the realized stock volatility during trading days using the HAR-CJ model to examine the effect of size and intensity of price jumps in predicting index volatility. The results showed that the development of HAR-CJ and HAR-RV-CJ models using the size and intensity of jump did not have a significant effect on improving the index volatility prediction but, to a small extent, the model prediction performance Adjusts for index volatility. Also, using intraday jumps instead of daily jumps, does not improve the performance of the prediction model.
منابع و مأخذ:
پوریعقوبی هادی، اشرفی یکتا (1399)، سرایتپذیری تلاطم بازده میان صنایع مختلف بازار سرمایه ایران، فصلنامه علمی پژوهشی دانش سرمایهگذاری، 9(34)، 293-277.
دوستیان رحمان و همکاران (1400)، سرایتپذیری تلاطم شرطی بازده در بانکهای پذیرفته شده در بورس اوراق بهادار، فصلنامه علمی پژوهشی دانش سرمایهگذاری، 10(37)، 178-159.
قاضی فینی سیدرضا، پناهیان حسین (1398)، پیش بینی و مدلسازی تلاطم بازدهی سهام در بورس اوراق بهادار تهران با استفاده از مدلهای GARCH، فصلنامه علمی تحقیقات حسابداری و حسابرسی، 11(43)، 70-55.
پاکیزه، کامران، (1390)، تلاطم و بازده (شواهدی از بورس اوراق بهادار تهران و بورس های بین الملل) فصلنامه علمی پژوهشی تحقیقات مدل سازی اقتصادی ، شماره دوم.
Andersen, T. G., Bollerslev, T, and F.X. Diebold and Labys, P. (2003), The distribution of exchange rate volatility, Journal of the American Statistical Association, vol. 96, pp. 42–55, 2003.
Andersen, T. G., Bollerslev, T., Dobrev, D. )2007(, No-arbitrage semimartingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications. Journal of Econometrics 138 (1), 125-180
Andersen, T. G., Bollerslev, T, and F.X. Diebold. (2007a), Roughing it up: Including jump components in the measurement, modelling and forecasting of return volatility. Review of Economics and Statistics, 89:701-720.
Andersen, T. G., Bollerslev, T, and Dobrev, D. (2007b), No-arbitrage semi-martingale restrictions for ncontinuous-time volatility models subject to leverage e_ects, jumps and i.i.d. noise: Theory and testable distributional implications. Journal of Econometrics 138: 125–80
Andersen, T.G., Bollerslev, T, Dobrev, D., (2007c), No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications. Journal of Econometrics 138, 125–180.
Barndorff-Nielsen, Ole E., and Shephard, N. (2004), Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics 2: 1–37.
Barndorff-Nielsen, Ole E., and Shephard, N. (2006), Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics 4: 1–30.
Bollerslev, T, and Ghysels, E. (1997), Periodic autoregressive conditional heteroscedasticity. Journal of Business and Economic Statistics, 14:139–151.
Buncic, D; I.M. Gisler, K, (2017), The role of Jumps and Leverage in forecasting Volatility in International Equity Markets, Journal of International Money and Finance VOL August 9.
Corsi, F.(2009), A Simple Approximate Long-memory Model of Realized Volatility, Journal of Financial Econometrics, Vol. 7, 174-196.
Corsi, Fulvio and Roberto Ren´o (2012), Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling, Journal of Business and Economic Statistics, 30(3), 368–380.
Délèze, F. Hussain, S.M, (2013), Information Arrival, Jumps and Cojumps in European Financial Markets: Evidence using tick by tick data.
Diebold F.X. and Mariano, R.S (1995), Comparing predictive accuracy. Journal of Business and Economics Statistics, 13:253–263.
Jurdi, D.J., (2020), Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds, Journal of Risk and Financial Management, 2020, 13, 118
Lahaye, J., Laurent, S., Neely, C.J., (2011), Jumps, Cojumps and Macro Announcements. Journal of Applied Econometrics 26, 893–921.
Lee, S. S., Mykland, P.A., (2008), Jumps in financial markets: A new nonparametric test and jump dynamics. Review of Financial Studies 21 (6), 2535-2563.
Műller, U. Dacorogna, M. Davé, R. Olsen, R. Pietet,O. and Weizsacker, J. von. (1997), Volatilities of different time resolutions – analysing the dynamics of market components, Journal of Empirical Finance , vol. 4, pp. 213–239.
Patton, A. (2011), Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160:246–256.
Seda,P. (2012), Performance of Heterogeneous Autoregressive Models of Realized Volatility: Evidence from U.S. Stock Market, International Journal of Economics and Management Engineering, Vol:6, No:12, 2012
West, K.D. (1996), Asymptotic inference about predictive ability. Econometrica, 64:1067–1084.
_||_