Microwave assisted oxidation coupling of thiols to symmetrical disulfides with tripropylammonium fluorochromate (VI) (TPAFC)
Subject Areas : Journal of the Iranian Chemical ResearchMohammad Kazem Mohammadi 1 , Neda Hasanzadeh 2 , Shahriare Ghammamy 3
1 - Islamic Azad University, Ahvaz Branch , Faculty of Science, Ahvaz , Iran
2 - Islamic Azad University, Ahvaz Branch , Faculty of Science, Ahvaz , Iran
3 - Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
Keywords: Oxidation, Microwave irradiation, thiol, Coupling, Disulfide, Tripropylammonium fluorochromate,
Abstract :
Tripropylammonium fluorochromate(VI) (TPAFC), is an efficient and new reagent, which isprepared easily and oxidizes thiols to the corresponding disulfides, quickly. The reactions areperformed cleanly and are controlled to stop at the disulfide stage, without over-oxidation andside products. Coupling of thiols to their corresponding disulfides, are studied in solution atroom temperature and in solution under microwave radiation. The easy procedure, simple workup,short reaction times, and excellent yields, are another advantages of this reagent.
[1] L.F. Fieser, M. Fieser, Reagents for Organic Synthesis, Wiley, New York, 1967.
[2] D.C .Jocelyn, Biochemistry of the Thiol Group, Academic Press, New York, 1992.
[3] G. Capozzi, G. Modena, S. Patai, The Chemistry of the Thiol Group, Wiley, New York, 1974.
[4] J. Lam, H. Bildose, L.P. Christensen, T. Thomsen, Acta Chem. Scand. Ser B 43 (1989) 799-
803.
[5] V. Srivastav, R. Gupta, R.R. Guptam, Ind. J. Chem. 39B (2000) 223-227.
N. Hasanzadeh & et al. / J. Iran. Chem. Res. 3 (2010) 155-160
160
[6] P. Metzner, Synthesis (1978) 669-674.
[7] D.L. Holbrook, Handbook of Petroleum Refining Processes, R.A. Meyers (Edi,) McGraw
Hill, 1996.
[8] A. Leitao, C. Costa, A. Rodrigues, Chem. Eng. Sci. 42 (1987) 2291-2298.
[9] E.P. Papadopoulos, A. Jarrar, C. H.Issidoides, J. Org. Chem. 31 (1966) 615-620.
[10] C. Lopez, F. Conzales, P. Cossio, C. Palomo, Synth. Commun. 15 (1985) 1197-1206.
[11] J.M. Aizpurua, M. Juaristu, B. Lecea, C. Palomo, Tetrahedron 41 (1985) 2903-2908.
[12] F. Yoneda, K. Suzuki, Y. Nitta, J. Org. Chem. 32 (1967) 727-735.
[13] K. Nakagawa, S. Shiba, M. Horikawa, K. Sato, H. Nakamura, N. Harada, F. Harada, Synth.
Commun. 10 (1980) 305-311.
[14] H. Firouzabadi, N. Iranpoor, F. Kiaeezadeh, J. Toofan, Tetrahedron 42 (1986) 719-726.
[15] S.V. Ley, A. Meerholz, D.H.R. Barton, Tetrahedron 37 (1982) 231-239.
[16] H.A. Muathen, Ind. J. Chem. 30B (1991) 522-530.
[17] A. Mckillop, D. Koyuncu, A. Krief, W. Dumont, P. Renier, M. Trabelsc, Tetrahedron Lett.
31 (1990) 5007-5011.
[18] H. Tamamura, A. Otaka, J. Nakamura, K. Okubo, T. Koide, K. Ikeda, N. Fujii, Tetrahedron
Lett. 34 (1993) 4931-4936.
[19] N.A. Noureldin, M. Coldwell, J. Hendry, D.G. Lee, Synthesis (1998) 1587-1595.
[20] (a) R.A. Abramovitch, Org. Prep. Proc. Int. 23 (1991) 683-689, (b) G. Majetich, R.J. Elec, Energy 30
(1995) 27-38, (c) S. Caddick, Tetrahedron 51 (1995) 10403-10409, (d) C.R. Strauss, R.W. Trainor,
Aust. J. Chem. 48 (1995) 1665-1672.
[21] (a) D. Bogdal, M. Warzala, Tetrahedron 56 (2000) 8769-8775, (b) D. Bogdal, J. Chem. Res. (1998)
468-472, (c) D. Bogdal, J. Pielichowski, K. Jaskot, Org. Prep. Proc. 30 (1998) 427-434.
[22] N. Iranpoor, B. Zeynizadeh, Synthesis (1999) 49-56.