Computational study on geometric and electronic properties of 3.6-carbazole based conjugated polymers
Subject Areas : Journal of the Iranian Chemical ResearchMohammed Bouachrine 1 , Kenza Hasnaoui 2 , Abdellatif Makayssi 3 , Mohammed Hamidi 4
1 - Unité de Recherche sur les Macromolécules et Modélisation, Faculté des Sciences et Techniques, B. P. 509 Boutalamine, 5200, Errachidia, Maroc
2 - Unité de Recherche sur les Macromolécules et Modélisation, Faculté des Sciences et Techniques, B. P. 509 Boutalamine, 5200, Errachidia, Maroc
3 - Unité de Recherche sur les Macromolécules et Modélisation, Faculté des Sciences et Techniques, B. P. 509 Boutalamine, 5200, Errachidia, Maroc
4 - Unité de Chimie Théorique Appliquée, Faculté des Sciences et Techniques, B. P. 509 Boutalamine, 5200, Errachidia, Maroc
Keywords: DFT, Carbazole, Geometrics, Electronic Properties,
Abstract :
In this work, we present firstly a study based on the calculation of the local spin densities of radical cations, which is known as a good measure of reactivity for coupling reactions, to obtain a theoretical basis for the one-step formation of poly(3.6-carbazole) and derivatives. Then we detail a DFT theoretical study of the geometric and electronic properties of oligomers based on carbazole and other conjugated monomers. These results will be compared with the experimental ones and with works realized by other authors
[1] (a) H.S. Nalwa, Handbook of Organic Conductive Molecules and Polymer, John Wiley, New York, 1997, (b) V.C. Nguyen, K. Potje-Kamloth, Thin Solid Films 338 (1999) 142.
[2] R.E. Gill, G.G. Malliaras, J. Wildeman, G. Hadziioannou, Adv. Mater. 6 (1994) 132, (b) P. Strohriegl, J.V. Grazulevicius,
[3] F. Garnier, G. Horowitz, X. Peng, D. Fichou, Adv. Mater. 2 (1990) 562.
[4] G. Wang, S. Qian, J. Xu, W. Wang, X. Liu, X. Lu, F. Li, Physica, Part B 279 (2000) 116.
[5] N. Balav, A. Moity, M. Biswas; Materials Chem. Phys. 87 (2004) 120.
[6] G. Zotti, G. Schiavon, S. Zecchin, J.F. Morin, M. Leclerc, Macromolecules 35 (2002) 2122.
[7] (a) R.B. Kawde, K.S.V. Santhanam, Bioelectro. Bioenerg. 38 (1995) 405, (b) C.I. Chao, S.A. Chen, Appl. Phys. Lett. 73 (1998) 426, (c) H. Meng, Z.K. Chen, W.L. Yu, J. Pei, X.L. Liu, Y.H. Lai, W. Huang, Synth. Met. 100 (1999) 297, (d) K.D. Almeida, J.C. Berne Âde, S. Marsillac, A. Godoy, F.R. Diaz, Synth. Met. 122 (2001) 127.
[8] (a) E. Sezer, M. Van Hooren, A.S. Sarac, M.L. Hallensleben, J. Polym. Sci. A: Polym. Chem. 37 (1999) 379, (b) D. Neher, Macromol Rapid Commun. 22 (2001) 1365, (c) C. Ego, D. Marsitzky, S. Becker, J. Zhang, A.C. Grimsdale, K. Müllen, J. Am. Chem. Soc. 125 (2003) 437.
[9] J.P. Lu, Y. Tao, M.D. Iorio, Y.N. Li, J.F. Ding, M. Day, Macromolecules 37 (2004) 2442.
[10] S. Beaupré, M. Leclerc, Macromolecules 36 (2003) 8986.
[11] (a) L Yang, J. Feng, A. Ren, Polymer 46 (2005) 10970, (b) L. Yang, J.K. Feng, A.M. Ren, J.Z. Sun, Polymer 47(2006) 1397.
[12] S. Surmtir, S. Hannongbua, P. Wolschann, J. Mol. Struct. (TheoChem) 807 (2007) 109.
[13] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.R. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Promelli, C. Adamo, S. Clifford, J. Ocherski, A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W.Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN98, Revision A 7, Gaussian Inc., Pittsburgh, PA, 2003.
[14] P.C. de Mello, M. Hehenberger, M.C. Zerner, Int. J. Quantum Chem. 21 (1982) 251.
[15] F.C. Grozema, L.P. Candeias, M. Swart, P. van Duijnen, J. Wildemen, G. Hadzianon, J. Chem. Phys. 117 (2002) 11366.
[16] E.M. Genies, G. Bidan, A.F. Diaz, J. Electronal. Chem. 149 (1983) 101.
[17] J.R. Smith, P.A. Cox, S.A. Campebell, N.M. Ratcliffe. J. Chem. Soc Faraday Trans 91 (1995) 2331.
[18] S. Ando, M. Ueda, Synth. Met. 12 (2002) 207.
[19] (a) M. Belletête, M. Bédard, M. Leclerc, G. Durocher, Synt. Met. 146 (2004) 99, (b) M. Belletête, J. Bouachard, M. Leclerc, Macromolecules. Met. 38 (2005) 880.
[20] S. Bouzakraoui, S.M. Bouzzine, M. Bouachrine, M. Hamidi, J. Mol. Struct. (TheoChem) 725 (2005) 39.
[21] M. Belletête, M. Bédard, M. Leclerc, G. Durocher, J. Mol. Struct. (TheoChem) 679 (2004) 9.
[22] U. Salzner, J.B. Lagowski, P.G. Pickup, R.A. Poirier, Synth. Met. 96 (1998) 177.
[23] (a) J. Huang, Y. Niu, W. Yang, Y. Mo, M. Yang, Y. Cao, Macromolecules 35 (2002) 6080, (b) J.F. Morin, M. Leclerc, Macromolecules 35 (2002) 8413.
[24] O. Paliulis, J. Ostrauskaite, V. Gaidelis, V. Jankauskas, P. Strohriegl, Macromol. Chem. Phys. 204 (2003) 1706.