افزایش کارایی غشا پلی پروپیلن فومارات (PPF) اصلاح شده توسط افزودنی اکسید گرافن / پلورونیکF68 به منظور تصفیه پساب کارخانجات سرامیک
محورهای موضوعی :
بیوتکنولوژی و پساب صنعتی
احسان قربان نژاد
1
,
علی آراسته نوده
2
*
,
سوسن خسرویار
3
,
محمود رضا خدنگی
4
1 - دانشجوی دکتری گروه مهندسی شیمی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
2 - دانشیارگروه مهندسی شیمی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران. *(مسوول مکاتبات)
3 - استادیارگروه مهندسی شیمی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
4 - استاد یارگروه مهندسی شیمی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
تاریخ دریافت : 1400/02/16
تاریخ پذیرش : 1402/04/07
تاریخ انتشار : 1402/04/01
کلید واژه:
پساب سرامیک,
پلورونیک F-68,
غشا,
پلی پروپیلن فومارات,
اکسید گرافن,
چکیده مقاله :
زمینه و هدف: با توجه به اینکه پساب کارخانجات سرامیک نسبت به سایر پسابهای مطالعه شده شهری میزان TDS و کدورت بالاتری دارند، غشا پلی پروپیلن فومارات (PPF) با توجه به عملکرد مکانیکی خوب، زیست تخریب پذیری قابل تنظیم و تولید آسان برای تصفیه این نوع پساب مناسب به نظر می رسد. اما ایراد اصلی PPF در فرایند جداسازی توسط غشا مربوط به خاصیت آبگریز بودن آن است که منجر به شار عبوری کم از غشا می شود و به راحتی مستعد رسوب می باشد. اکسید گرافن[1] (GO) با وجود گروههای عاملی اکسیژن دار مانند هیدروکسیل ، اپوکسی و کربوکسیل در GO به عنوان متداول ترین ذرات معدنی آب دوست برای اصلاح غشا مورد توجه قرار گرفته است.اما یکی از مشکلات اصلی این غشاها، پراکندگی نا همگن GO در شبکه پلیمری است. بنابراین افزایش کارایی غشا پلی پروپیلن فومارات (PPF) توسط افزودنی اکسید گرافن / پلورونیکF68 بررسی شده است.
روش بررسی: به منظور بهبود خواص آب دوستی و مورفولوژیکی غشا PF ، اکسید گرافن که توسط پلورونیک F-68اصلاح شده است به غشا اضافه شد و غشاها با روش VIPS تهیه شد. اثرات غلظت افزودنی و زمان قرار گرفتن در معرض بخار بر آب دوستی و شار نفوذی غشا PPF در تصفیه پساب ذکر شده بررسی شد. برای ارزیابی عملکرد غشای آماده شده، فیلتراسیون جریان متقاطع ناپیوسته انتخاب شد. واحد تست غشا در مقیاس آزمایشگاهی در اسفند 1400 مورد استفاده قرار گرفت.
یافته ها: باافزایش غلظت پلورونیک F-68/ کسید گرافن تا 4 درصد جرمی، سطح آب دوستی غشا بیشتر شده و با افزایش زمان ماندگاری تا 30 دقیقه، زاویه تماس کاهش می یابد. غشاهای اصلاح شده توسط Pluronic F-68 / GO به دلیل تخلخل بالای غشا نسبت به سایر غشاها از نفوذ پذیری آب خالص بالاتری در مقایسه با غشا اصلاح نشده PPF برخوردار هستند.
بحث و نتیجه گیری: این غشاها در مقایسه با غشا خالصPPF از نفوذ پذیری آب خالص بالاتری برخوردار هستند. غشای اصلاح شده با 4 درصد جرمی GO / Pluronic F-68 (زمان در معرض قرار گرفتن 20 دقیقه) در مقایسه با سایر غشاها توانایی بالاتری در کاهش شاخص های آلودگی پساب دارد.
4- Graphene oxide
چکیده انگلیسی:
Background and Objective: Due to the fact that the wastewater of ceramic factories have higher TDS and turbidity, Poly propylene fumarate (PPF) membranes seems to be suitable for the treatment of this type of wastewater due to their good mechanical performance, adjustable biodegradability and easy production. However, the main disadvantage of the PPF in membrane separation related to hydrophobicity property of it which leads to a low membrane flux and is easily susceptible for fouling. Presence of oxygenated functional groups such as hydroxyl, epoxy, and carboxyl in GO causes the modified membranes have high effective flux and better antifouling property. One of main problem associated with preparation of membranes containing GO is possibly related to the more homogenous dispersion of GO into the polymer matrix. The presence of Pluronic F-68 can solve this problem.
Material and Methodology: In this work, in order to improve the hydrophilic and morphological properties of PPF membrane, the graphene oxide that has been modified by Pluronic F-68 was added in to the membrane. These membranes were prepared with VIPS method. The effects of the modified additive concentrations and vapor exposure times on hydrophilicity and permeation flux of the PPF membranes in mentioned wastewater treatment were investigated.
Findings: Increasing GO/Pluronic F-68 loading from 0 wt. % to 4 wt. %, the hydrophilicity level is increased and the contact angle is decreased by increasing the exposure time up to 30 min due to the high porosity of membranes than others. The modificated membranes by Pluronic F-68 /GO present higher pure water permeability in comparison with the neat PPF membrane.
Discussion and Conclusion: These membranes have higher pure water permeability in comparison with the neat PPF membrane. The membrane modified with 4wt. % of GO/Pluronic F-68 (Exposure time of 20 min) has high ability in reduction of wastewater pollution indices in comparison with others.
منابع و مأخذ:
Khosroyar S., Arastehnodeh A., Using response surface methodology and Box-Behnken design in the study affecting factors on dairly wastewater treatment by MEUF, Membrane water treatment 9(5), 2018, 335-342.
Arastehnodeh , Susan Khosroyar, Vahid Hakimzadeh, Studying Transmembrane Pressure, pH and Anionic Surfactant (SDS) Concentration Effects on MEUF Process Performance in Dairy Waste Water Treatment Using Response Surface Methodology Design, Journal of Research and Innovation in Food Science and Technology, 8(1) 98.
Khosroyar S.,Arastehnodeh A., improving hydrophilic and antimicrobial properties of memberan by adding nanoparticles of titanium dioxide and coper oxide, Memberane water treatment, 9(6) 2018 481-487.
Mohammad Khajouei, Mahsa Najafi, Seyed Ahmad Jafari, Development of ultrafiltration membrane via in-situ grafting of nano-GO/PSF with anti-biofouling properties, Chemical Engineering Research and Design,2019, 1 4 2 ,34–43
Ana M. Diez-Pascual, Tissue Engineering Bionanocomposites Based on Poly (propylene fumarate), Polymers 2017, 9, 260.
Pascual, A. Díez-Vicente, Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering, ACS Appl. Mater. Interfaces , 2016, 8, 28.
Bano, S., Mahmood, A., Kim, S.J., Lee, K.H., Graphene oxidemodified polyamide nanofiltration membrane with improvedflux and antifouling properties. J. Mater. Chem. A 3, 2015, 2065–2071.
AntoineVenault, Alith Jean Jumao-as-Leyba, Zhong-Ru Yang, Séverine Carretier,Yung Chang, Formation mechanisms of low-biofouling PVDF/F127 membranes prepared by VIPS process, Journal of the Taiwan Institute of Chemical Engineers , 2016, 34, 1–10.
Shi, Y. Su, X. Ning, W. Chen, J. Peng, Z. Jiang, Graft polymerization of methacrylic acid onto polyethersulfone for potential pH-responsive membrane materials. J Membr Sci., 2010, 347, 62–8.
Liu B,Chen C,Zhang W,Crittenden J,Chen Y.Low-cost antifouling PVC ul trafiltration membrane fabrication with Pluronic F127:Effect of additives on properties and performances .Desalination 2012,307,22–33.
Mansourpanah, Y., Shahebrahimi, H., Kolvari, E., PEG-modified GO nanosheets, a desired additive to increasethe rejection and antifouling characteristics of polyamide thinlayer membranes. Chem. Eng. Res. Des., 2015, 104, 530–540.
Berg. M. Ulbricht, Polymer Nanocomposite Ultrafiltration Membranes: The Influence of Polymeric Additive, Dispersion Quality and Particle Modification on the Integration of Zinc Oxide Nanoparticles into Polyvinylidene Difluoride Membranes, Membranes (Basl). 2020 ,10(9): 197.
Louie, J.S.; Pinnau, I.; Ciobanu, I.; Ishida, K.P.; Ng, A.; Reinhard, M. Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. Membr. Sci.2006, 280, 762–770.
Jiang, P. Wang, R. Liang, W. Qin, Improving the Biocompatibility of Polymeric Membrane Potentiometric Ion Sensors by Using a Mussel-Inspired Polydopamine Coating Anal. Chem. 2019, 91, 10, 6424–6429.
Yu S., Yao G., Dong B., Zhu H., Peng X., Liu J., Liu M., Gao C. Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin. Purif. Technol. 2013, 118, 285–293.
Ahmed O. Rashed, Amal M. K. Esawi, Adham R. Ramadan, Novel Polysulfone/Carbon Nanotube-Polyamide Thin Film Nanocomposite Membranes with Improved Water Flux for Forward Osmosis Desalination, ACS Omega, 2020, 5, 14427–14436.
Igbinigun, Y. Fennell, R. Malaisamy, K.L. Jones, V. Morris, Graphene oxide functionalized polyethersulfone membrane to reduce organic fouling, J. Membr. Sci., 514 (2016) 518–526.
K.Joshi,S. Alwarappan , M.Yoshimura ,V.Sahajwalla , Y.Nishina, Graphene oxide: the new membrane material, Applied material today,2015,1,1-12.
Tang, W. Li, Z. Yu, enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5- triazine. Carbon., 49 (2011), 1258–1265.
Ana Rey- Rico, Magali Cucchiarini, PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine- An Overview, J. Mol. Sci. 2018, 19, 775.
Madalina Pandele , C. Andronescu , E. Vasile , I.C. Radu , P.Stanescu , H. Iovu, Non-covalent functionalization of GO for improved mechanical performances of pectin composite films, Composites Part A: Applied Science and Manufacturing, 2017,103, 188-195.
Wang JH, Zhang YH, Xu YY, et al. Fabrication of hydrophilic and sponge-like PVDF/brush-like copolymer blend membranes using triethylphosphate as solvent. Chin J Polym Sci, 2014; 32: 143–150.
Yang, C. Zhao, S. Zhang , P. Li, D. Hou, Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property, Appl. Surf. Sci., 394 (2017) 149–159.
Kouhestani, M. A. Torangi, A. Motavalizadehkakhky, R. Karazhyan, R. Zhiani,
Enhancement strategy of polyethersulfone (PES) membrane by introducing pluronic F127/graphene oxide and phytic acid/graphene oxide blended additives: preparation, characterization and wastewater filtration assessment, Desalination and Water Treatment , 2019 171 , 44-56.
Melika Ebrahimpour, Ali Akbar Safekordi, Seyed Mahmoud Mousavi, Amir Heydarinasab, Modification strategy of biodegradable poly (butylene succinate) (PBS) membrane by introducing Al2O3 nanoparticles: preparation, characterization and wastewater treatment , Desalination and water treatment, 2017, 79, 19–29.
M. Shurygin, Guenther, S. Fuchs, V. Prehn, Effective treatment of the wastewater from ceramic industry using ceramic membranes, Water Sci Technol, 2021, 83 (5): 1055–1071.
_||_
Khosroyar S., Arastehnodeh A., Using response surface methodology and Box-Behnken design in the study affecting factors on dairly wastewater treatment by MEUF, Membrane water treatment 9(5), 2018, 335-342.
Arastehnodeh , Susan Khosroyar, Vahid Hakimzadeh, Studying Transmembrane Pressure, pH and Anionic Surfactant (SDS) Concentration Effects on MEUF Process Performance in Dairy Waste Water Treatment Using Response Surface Methodology Design, Journal of Research and Innovation in Food Science and Technology, 8(1) 98.
Khosroyar S.,Arastehnodeh A., improving hydrophilic and antimicrobial properties of memberan by adding nanoparticles of titanium dioxide and coper oxide, Memberane water treatment, 9(6) 2018 481-487.
Mohammad Khajouei, Mahsa Najafi, Seyed Ahmad Jafari, Development of ultrafiltration membrane via in-situ grafting of nano-GO/PSF with anti-biofouling properties, Chemical Engineering Research and Design,2019, 1 4 2 ,34–43
Ana M. Diez-Pascual, Tissue Engineering Bionanocomposites Based on Poly (propylene fumarate), Polymers 2017, 9, 260.
Pascual, A. Díez-Vicente, Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering, ACS Appl. Mater. Interfaces , 2016, 8, 28.
Bano, S., Mahmood, A., Kim, S.J., Lee, K.H., Graphene oxidemodified polyamide nanofiltration membrane with improvedflux and antifouling properties. J. Mater. Chem. A 3, 2015, 2065–2071.
AntoineVenault, Alith Jean Jumao-as-Leyba, Zhong-Ru Yang, Séverine Carretier,Yung Chang, Formation mechanisms of low-biofouling PVDF/F127 membranes prepared by VIPS process, Journal of the Taiwan Institute of Chemical Engineers , 2016, 34, 1–10.
Shi, Y. Su, X. Ning, W. Chen, J. Peng, Z. Jiang, Graft polymerization of methacrylic acid onto polyethersulfone for potential pH-responsive membrane materials. J Membr Sci., 2010, 347, 62–8.
Liu B,Chen C,Zhang W,Crittenden J,Chen Y.Low-cost antifouling PVC ul trafiltration membrane fabrication with Pluronic F127:Effect of additives on properties and performances .Desalination 2012,307,22–33.
Mansourpanah, Y., Shahebrahimi, H., Kolvari, E., PEG-modified GO nanosheets, a desired additive to increasethe rejection and antifouling characteristics of polyamide thinlayer membranes. Chem. Eng. Res. Des., 2015, 104, 530–540.
Berg. M. Ulbricht, Polymer Nanocomposite Ultrafiltration Membranes: The Influence of Polymeric Additive, Dispersion Quality and Particle Modification on the Integration of Zinc Oxide Nanoparticles into Polyvinylidene Difluoride Membranes, Membranes (Basl). 2020 ,10(9): 197.
Louie, J.S.; Pinnau, I.; Ciobanu, I.; Ishida, K.P.; Ng, A.; Reinhard, M. Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. Membr. Sci.2006, 280, 762–770.
Jiang, P. Wang, R. Liang, W. Qin, Improving the Biocompatibility of Polymeric Membrane Potentiometric Ion Sensors by Using a Mussel-Inspired Polydopamine Coating Anal. Chem. 2019, 91, 10, 6424–6429.
Yu S., Yao G., Dong B., Zhu H., Peng X., Liu J., Liu M., Gao C. Improving fouling resistance of thin-film composite polyamide reverse osmosis membrane by coating natural hydrophilic polymer sericin. Purif. Technol. 2013, 118, 285–293.
Ahmed O. Rashed, Amal M. K. Esawi, Adham R. Ramadan, Novel Polysulfone/Carbon Nanotube-Polyamide Thin Film Nanocomposite Membranes with Improved Water Flux for Forward Osmosis Desalination, ACS Omega, 2020, 5, 14427–14436.
Igbinigun, Y. Fennell, R. Malaisamy, K.L. Jones, V. Morris, Graphene oxide functionalized polyethersulfone membrane to reduce organic fouling, J. Membr. Sci., 514 (2016) 518–526.
K.Joshi,S. Alwarappan , M.Yoshimura ,V.Sahajwalla , Y.Nishina, Graphene oxide: the new membrane material, Applied material today,2015,1,1-12.
Tang, W. Li, Z. Yu, enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5- triazine. Carbon., 49 (2011), 1258–1265.
Ana Rey- Rico, Magali Cucchiarini, PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine- An Overview, J. Mol. Sci. 2018, 19, 775.
Madalina Pandele , C. Andronescu , E. Vasile , I.C. Radu , P.Stanescu , H. Iovu, Non-covalent functionalization of GO for improved mechanical performances of pectin composite films, Composites Part A: Applied Science and Manufacturing, 2017,103, 188-195.
Wang JH, Zhang YH, Xu YY, et al. Fabrication of hydrophilic and sponge-like PVDF/brush-like copolymer blend membranes using triethylphosphate as solvent. Chin J Polym Sci, 2014; 32: 143–150.
Yang, C. Zhao, S. Zhang , P. Li, D. Hou, Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property, Appl. Surf. Sci., 394 (2017) 149–159.
Kouhestani, M. A. Torangi, A. Motavalizadehkakhky, R. Karazhyan, R. Zhiani,
Enhancement strategy of polyethersulfone (PES) membrane by introducing pluronic F127/graphene oxide and phytic acid/graphene oxide blended additives: preparation, characterization and wastewater filtration assessment, Desalination and Water Treatment , 2019 171 , 44-56.
Melika Ebrahimpour, Ali Akbar Safekordi, Seyed Mahmoud Mousavi, Amir Heydarinasab, Modification strategy of biodegradable poly (butylene succinate) (PBS) membrane by introducing Al2O3 nanoparticles: preparation, characterization and wastewater treatment , Desalination and water treatment, 2017, 79, 19–29.
M. Shurygin, Guenther, S. Fuchs, V. Prehn, Effective treatment of the wastewater from ceramic industry using ceramic membranes, Water Sci Technol, 2021, 83 (5): 1055–1071.