شبیهسازی اثر تغییر اقلیم بر عملکرد و کارایی مصرف آب سیب زمینی (Solanum tuberosum L.) در اردبیل
محورهای موضوعی :
کشاورزی و محیط زیست
آتوسا شفارودی
1
,
عبدالقیوم قلی پوری
2
,
برومند صلاحی
3
1 - دکتری، گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران. (مسوول مکاتبات)
2 - دانشیار، گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - استاد، گروه اقلیمشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.
تاریخ دریافت : 1398/10/04
تاریخ پذیرش : 1399/03/13
تاریخ انتشار : 1400/06/01
کلید واژه:
SUBSTOR-Potato,
HadCM3,
سناریوهای انتشار,
LARS-WG,
چکیده مقاله :
زمینه و هدف: تغییر اقلیم باعث تغییراتی در الگوهای بارش، دما و مقدار آن ها می شود و این تغییرات می تواند عملکرد گیاهان را تحت تأثیر قرار دهد. در این مطالعه، به بررسی کارایی مدل DSSAT در شبیه سازی عملکرد غده و کارایی مصرف آب گیاه سیب زمینی تحت تغییر اقلیم آینده، در تیمارهای مختلف کم آبیاری و رقم به عنوان یک راهکار سازگاری، پرداخته شد.روش بررسی: به این منظور از داده های تولیدی بارش، دمای حداقل و حداکثر مدل ریزمقیاس نمایی آماری LARS-WG5 با استفاده از مدل گردش عمومی HadCM3 و تحت سناریوی A1B در دوره های آتی 2040-2011، 2070-2041 ،2100-2071 و دوره پایه 2016-1988 استفاده شد. برای شبیه سازی رشد و عملکرد سیب زمینی نیز از مدل DSSAT و زیر مدل SUBSTOR-Potato استفاده شد. قبل از استفاده، توسط داده های مزرعه ای جمع آوری شده از مرکز تحقیقات کشاورزی و منابع طبیعی اردبیل، واسنجی و صحت سنجی انجام شد. سپس مقادیر عملکرد غده و کارایی مصرف آب در دوره های آتی، برای این مطالعه تحت سه تیمار آبیاری کامل به عنوان تیمار شاهد (FI)، آبیاری گیاه به میزان 15 درصد کمتر از تیمار شاهد (LI1) و آبیاری گیاه به میزان 30 درصد کمتر از تیمار شاهد (LI2) با پنج رقم سیب زمینی (آگریا (عرف منطقه)، کایزر، ساوالان و کلون های 1-397081 و 10-397082 با 3 تکرار و در دو سال زراعی 95 و 1394 شبیه سازی شد.یافته ها: با توجه به نتایج، تحت سناریوی A1B در سطوح آبیاری FI و LI1، برای دوره 2040 و 2070 نسبت به دوره پایه، مقادیر عملکرد غده و کارایی مصرف آب شبیه سازی شده بیشترین درصد افزایش را نشان دادند. همچنین با انتخاب ارقام ساوالان، 1-397081 و 10-397082 بیشترین افزایش برای مقادیر عملکرد غده و کارایی مصرف آب برای دوره های 2040 و 2070 شبیه سازی شد.بحث و نتیجه گیری: همانطور که نتایج نشان می دهد، کاهش درصد کمتر عملکرد در تیمارهای کم آبیاری نسبت به آبیاری کامل، در دوره های آتی نسبت به دوره پایه مؤید امکان جایگزینی تیمار کم آبیاری (LI1) به جای تیمار آبیاری کامل (FI) می باشد. در نتیجه تیمار آبیاری به میزان 15 درصد کمتر از آبیاری کامل، جهت آبیاری مزارع سیب زمینی با توجه به اهمیت حفظ و صرفه جویی منابع آب در دوره های آتی با تغییر اقلیم توصیه می گردد.
چکیده انگلیسی:
Background and Objective: Climate change causes changes in rainfall patterns, temperatures and their amount, and these changes can affect plant performance. In this study, the efficiency of DSSAT model in simulating tuber yield and water use efficiency of potato plant under future climate change in different irrigation treatments and cultivar as an adaptation strategy was investigated.Material and Methodology: For this purpose, the precipitation data, minimum and maximum temperatures were produced using the LARS-WG5 statistical exponential micro-scale model (Long Ashton Research Station-Weather Generator) under the HadCM3 general circulation model. The A1B scenario was applied to future periods of 2011-2040, 2041-2070, 2071-2100 and the basic period 1988-2016. DSSAT model and SUBSTOR-Potato model were used to simulate potato growth and yield. Prior to use, field data collected from Ardebil, Iran that were calibrated and validated. Then the values of tuber yield and water use efficiency were simulated in future periods. Three irrigation treatments were used such as full irrigation (FI), 15% less than control (LI1) and 30% less than control treatment (LI2), with five potato cultivars Agria (the conventional cultivation of the area), Caeser, Savalan, clones 397081-1, and 397082-10 with 3 replications.Finding: According to the results, under the A1B scenario at the irrigation levels of FI and LI1, simulated values of tuber yield and water use efficiency showed the highest values for 2040 and 2070 compared to the basal period. It was also simulated by selecting Savalan cultivars, 397081-1, and 397082-10 the highest increase for tuber yield and water use efficiency values for 2040 and 2070 periods.Discussion and Conclusion: In following, The Less reduction in percentage of yield allowed the low irrigation (LI1) to replace the full irrigation (FI) treatment in future periods compared to the baseline period. Because of the importance of conserving and saving water resources in future climate change periods, irrigation of 15% less than full irrigation is recommended for irrigation of potato fields. The results of the simulation of water use efficiency can also emphasize the use of irrigation treatment 15% less than the control.
منابع و مأخذ:
Luo, X., Xia, J., Yang, H., 2015. Modeling water requirements of major crops and their responses to climate change in the North China Plain. Environmental Earth Science, Vol. 74, pp. 3531-3541.
Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson, A.M., Wolfe, D., 2011. Climate impacts on agriculture: implications for crop production. Agronomy Journal, Vol. 103, pp. 351-370.
Jones, J. W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., 2003. Ritchie. The DSSAT cropping system model. Europian Journal Agronomy, Vol. 18, pp. 235- 265.
Mehan, S., Guo, T., Gitau, M.V., Flanagan, D.C., 2017. Comparative study of different stochastic weather generators for long-term climate data simulation. Journal Climate, Vol. 5, pp. 1-40.
Araya, A., Kisekka, I., Lin, X., Vara Prasad, P.V., Gowda, P.H., Rice, C., Andales, A., 2017. Evaluating the impact of future climate change on irrigated maize production in Kansas. Climate Risk Management. Vol. 17, pp. 139–154.
Daccache, A., Weatherhead, E.K., Stalham, M.A., Knox, J.W., 2011. Impacts of climate change on irrigated potato production in a humid climate. Agriculture and Forest Meteology. Vol. 151, pp. 1641-1653.
Hoogenboom, G.J., Jones, W., Wilkens, P.W., Porter, C.H., Boote, K.J., Hunt, L.A., Singh, U., Lizaso, G.L., White, J.W., Uryasev, O., Royce, F.S., Ogoshi, R., Gijsman, A.J., Tsuji, G.Y., 2010. Decision support system for agro-technology transfer (DSSAT), university of Hawaii, Honolulu, Hawaii, USA.
Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, j., 2018. Climate change impact on global potato production. European Journal Agronomy, Vol. 100, pp. 87-98.
Stastna, M., Toman, F., Dufkova, J., 2010. Usage of SUBSTOR model in potato yield prediction. Agriculture Water Management, Vol. 2, pp. 286-290.
Taei Semiromi, J., Amiri, E., Aeen, A., Borumand, N., Jowkar, M., 2017. Evaluation of DSSAT model for potential yield prediction of potato (Solanum tuberosum) under autumn cropping system (Case study: Jiroft, Iran). Journal Agriculture Crops Production, Vol. 19, pp. 893-905. (In Persian)
Li-li, ZH., Shu-hua, L., Zhi-min, W., Pu, W., Ying-hua, Zh., Hai-Jun, Y., Zhen, G., Si, Sh., Xiao, L., Jia-hui, W., Shun-li, Zh., 2018. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain. Journal Integrative Agriculture. Vol. 17, pp. 1181-1193.
Saymohammadi, S., Zarafshani, K., Tvakoli, M., Mahdizadeh, H., Amiri, F., 2017. Prediction of climate change induced temperature & precipitation: the case of Iran. Sustainable Journal, Vol. 9, pp. 1-13.
Ababaei, B., Sohrabi, T., and Mirzaei, F., 2014. Development and application of a planning support system to assess strategies related to land and water resources for adaptation to climate change. Climate Risk Management, Vol. 6, pp. 39-50.
Arora, V.K., Nath, J.C., Singh, C.B., 2013. Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model. Agric. Water Management. Vol. 124, pp. 69-76.
Malkia, R., Hartani, T., Dechmi, F., 2016. Evaluation of DSSAT model for sprinkler irrigated potato: A case study of Northeast Algeria. African Journal Agriculture Research, Vol. 11, pp. 2589-2598.
Adavi, Z., Moradi, R., Saeidnejad, A.H., Tadayon, M.R., Mansouri, H., 2018. Assessment of potato response to climate change and adaptation strategies. Scientia Horticulture. Vol. 228, pp. 91-102.
Haverkort, A. J., Franke, A.C., Engelbrecht, F.A., Steyn, J.m., 2013. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies. Potato Research. Vol. 56, pp. 31-50.
IPCC. 2007. (Intergovernmental Panel on Climate Change). Climate Change: Impacts, Adaptation and Vulnerability. Summary for Policy Makers. Cambridge University Press, Cambridge.
Dahal, K., Li, X.Q., Tai, H., Creelman, A., Bizimungu, B., 2019. Improving potato stress tolerance and tuber yield under a climate change scenario – A current overview. Fronti in Plant Science. Vol. 10, pp. 1-16.
_||_
Luo, X., Xia, J., Yang, H., 2015. Modeling water requirements of major crops and their responses to climate change in the North China Plain. Environmental Earth Science, Vol. 74, pp. 3531-3541.
Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson, A.M., Wolfe, D., 2011. Climate impacts on agriculture: implications for crop production. Agronomy Journal, Vol. 103, pp. 351-370.
Jones, J. W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., 2003. Ritchie. The DSSAT cropping system model. Europian Journal Agronomy, Vol. 18, pp. 235- 265.
Mehan, S., Guo, T., Gitau, M.V., Flanagan, D.C., 2017. Comparative study of different stochastic weather generators for long-term climate data simulation. Journal Climate, Vol. 5, pp. 1-40.
Araya, A., Kisekka, I., Lin, X., Vara Prasad, P.V., Gowda, P.H., Rice, C., Andales, A., 2017. Evaluating the impact of future climate change on irrigated maize production in Kansas. Climate Risk Management. Vol. 17, pp. 139–154.
Daccache, A., Weatherhead, E.K., Stalham, M.A., Knox, J.W., 2011. Impacts of climate change on irrigated potato production in a humid climate. Agriculture and Forest Meteology. Vol. 151, pp. 1641-1653.
Hoogenboom, G.J., Jones, W., Wilkens, P.W., Porter, C.H., Boote, K.J., Hunt, L.A., Singh, U., Lizaso, G.L., White, J.W., Uryasev, O., Royce, F.S., Ogoshi, R., Gijsman, A.J., Tsuji, G.Y., 2010. Decision support system for agro-technology transfer (DSSAT), university of Hawaii, Honolulu, Hawaii, USA.
Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, j., 2018. Climate change impact on global potato production. European Journal Agronomy, Vol. 100, pp. 87-98.
Stastna, M., Toman, F., Dufkova, J., 2010. Usage of SUBSTOR model in potato yield prediction. Agriculture Water Management, Vol. 2, pp. 286-290.
Taei Semiromi, J., Amiri, E., Aeen, A., Borumand, N., Jowkar, M., 2017. Evaluation of DSSAT model for potential yield prediction of potato (Solanum tuberosum) under autumn cropping system (Case study: Jiroft, Iran). Journal Agriculture Crops Production, Vol. 19, pp. 893-905. (In Persian)
Li-li, ZH., Shu-hua, L., Zhi-min, W., Pu, W., Ying-hua, Zh., Hai-Jun, Y., Zhen, G., Si, Sh., Xiao, L., Jia-hui, W., Shun-li, Zh., 2018. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain. Journal Integrative Agriculture. Vol. 17, pp. 1181-1193.
Saymohammadi, S., Zarafshani, K., Tvakoli, M., Mahdizadeh, H., Amiri, F., 2017. Prediction of climate change induced temperature & precipitation: the case of Iran. Sustainable Journal, Vol. 9, pp. 1-13.
Ababaei, B., Sohrabi, T., and Mirzaei, F., 2014. Development and application of a planning support system to assess strategies related to land and water resources for adaptation to climate change. Climate Risk Management, Vol. 6, pp. 39-50.
Arora, V.K., Nath, J.C., Singh, C.B., 2013. Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model. Agric. Water Management. Vol. 124, pp. 69-76.
Malkia, R., Hartani, T., Dechmi, F., 2016. Evaluation of DSSAT model for sprinkler irrigated potato: A case study of Northeast Algeria. African Journal Agriculture Research, Vol. 11, pp. 2589-2598.
Adavi, Z., Moradi, R., Saeidnejad, A.H., Tadayon, M.R., Mansouri, H., 2018. Assessment of potato response to climate change and adaptation strategies. Scientia Horticulture. Vol. 228, pp. 91-102.
Haverkort, A. J., Franke, A.C., Engelbrecht, F.A., Steyn, J.m., 2013. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies. Potato Research. Vol. 56, pp. 31-50.
IPCC. 2007. (Intergovernmental Panel on Climate Change). Climate Change: Impacts, Adaptation and Vulnerability. Summary for Policy Makers. Cambridge University Press, Cambridge.
Dahal, K., Li, X.Q., Tai, H., Creelman, A., Bizimungu, B., 2019. Improving potato stress tolerance and tuber yield under a climate change scenario – A current overview. Fronti in Plant Science. Vol. 10, pp. 1-16.