ارزیابی مقدار کاهش انتشار گازگلخانهای CO2 در محیط زیست با جایگزینی پوزولان معدنی محلی به عنوان بخشی از سیمان در بتن با رویکردکاهشآلایندگی
محورهای موضوعی :
ارزیابی پی آمدهای محیط زیستی
مجتبی رنگرزیان
1
,
رحمت مدندوست
2
,
رضا محجوب
3
,
مهدی رفتاری
4
1 - دانشجوی دکتری، گروه مهندسی عمران، واحد خرمآباد، دانشگاه آزاد اسلامی، خرمآباد، ایران.
2 - استاد، مدعو گروه مهندسی عمران، واحد خرمآباد، دانشگاه آزاد اسلامی، خرمآباد، ایران
3 - استادیار، گروه مهندسی عمران، واحد خرمآباد، دانشگاه آزاد اسلامی، خرمآباد، ایران. *(مسوول مکاتبات)
4 - استادیار، گروه مهندسی عمران، واحد خرمآباد، دانشگاه آزاد اسلامی، خرمآباد، ایران.
تاریخ دریافت : 1401/02/24
تاریخ پذیرش : 1401/10/28
تاریخ انتشار : 1402/02/01
کلید واژه:
انتشار CO2,
گازهای گلخانهای,
پوزولان معدنی محلی,
پتانسیل گرمایش جهانی(GWP),
بتن سبز,
چکیده مقاله :
زمینه و هدف: گرمایش جو کره زمین عمدتاً به دلیل آلودگی ناشی از انتشار گازهای گلخانهای و غالباً دیاکسیدکربن (CO2) میباشد. کاهش گازهای گلخانهای و تجزیه و تحلیل و نظارت بر محیطزیست یکی از دغدغههای بشر امروزی است.کارخانههای سیمان تولیدکنندگان عمده گازهای گلخانهای هستند. هدف اصلی این پژوهش، یافتن مادهای با خاصیت سیمانی(پوزولان) و قابل جایگزینی در قسمتی از سیمانِ بتن با مدّ نظر قرار دادن کاهش مصرف سیمان وکاهش انتشارگاز گلخانه ای CO2 می باشد. پوزولان معدنی محلی مورد پژوهش، دارای خواص مشابه پوزولان های مشهور جهان بوده و استانداردهای مربوط را داراست.روش بررسی: به منظور یافتن طرح بهینه جایگزینی پوزولان معدنی محلی با بخشی از سیمان، در تابستان سال 1400، طرح اختلاط با چهار گونه 5، 10، 15 و 20 درصد وزنی مورد مطالعه قرار گرفت و تاثیر آن بر مقاومت فشاری بتن و مقدار انتشار گاز گلخانهای CO2 و توانایی آن درکاهش مقدار آلایندگی زیست محیطی در مقایسه با بتن سیمانی معمولی مورد ارزیابی قرار گرفت.یافتهها: نتایج نشان داد بهترین میزان جایگزینی این پوزولان به سیمان در بتن، 15 درصد وزنی است و باعث افزایش 4/2 درصدی مقاومت میشود. همچنین این پوزولان نسبت به بتن سیمانی معمولی 20/15کیلوگرم در هر مترمکعب CO2 کمتری منتشر مینماید که این مقدار مشابه سایر پوزولانهای پُرکاربرد میباشد.بحث و نتیجه گیری: با توجه به اثرات مطلوب درتقویت ساختار وکاهش مصرف سیمان در بتن، پوزولان مورد پژوهش را میتوان به عنوان مادهی کاهنده سیمان و دوستدار محیطزیست معرفی نمود.
چکیده انگلیسی:
Background and Objective: Global warming is caused by the emission of greenhouse gases, mainly (CO2). Reducing greenhouse gases and monitoring the environment are important goals of today's mankind. Cement factories are the main producers of greenhouse gases. The main goal of this research is to find a material with cement properties (pozzolan) that can be replaced in a part of concrete cement with the aim of reducing cement consumption and reducing CO2 greenhouse gas emissions. The local mineral pozzolan under research has similar properties to world-famous pozzolans and has the relevant standards.Material and Methodology: To find the optimal amount of pozzolan in the concrete, In Sep. 2021, four cases of 5, 10, 15 and 20% by weight was studied and its effect on concrete compressive strength and CO2 emissions and its ability to reduce pollution Environmental was evaluated in comparison with conventional cement concrete. Findings: Experiments showed that the best amount of replacement of this pozzolan to cement in concrete is 15% by weight and increases the strength by 2.4%. Also, this pozzolan emits less CO2 than normal cement concrete equal to 15.20 kg/m3.Discussion and Conclusion: Considering the favorable effects of this pozzolan in strengthening the structure and reducing the consumption of cement in concrete, it can be introduced as a cement-reducing and environmentally friendly material.
منابع و مأخذ:
Root T. L TPJ, Hall K, Schneider S, Rosenzweig C, Pounds A,. Fingerprints of global warming on wild animals and plants. nature. 2003;421:57-60.
Stocker T.F. QD, Plattner G., Tignor M., Allen S. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The Physical Science Basis. 2013(Cambridge University Press):1535PP.
AO. Greenhouse gas emission inventory and quantifying regional compatible mitigation plans-horizon 2030 (case study: Guilan province, Iran). Iranian Journal of Health and Environment. 2022;15(1):121-36.
Kweku D BO, Maxwell A, Ato Desmond K,Danso K, Oti-Mensah E, Quachie A, Adormaa B. Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research & Reports. 2018;17. (6)
Hallsdóttir B.S. KR, Gudmundsson J. National Inventory Report 2007 -ICELAND National Inventory Report Iceland 2007 Submitted under the United Nations Framework Convention on Climate Change. 2007.
Rahimpour M.R. FM, Makarem M.A. Advances in Carbon Capture : Methods, Technologies and Applications. 1st Edition ed. Kelvin O.Yoro MOD, editor: Elsevier Science, 2020; 2020. 570 p.
Worrell E. PL, Martin N., Hendriks C.,Meida L. Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ. 2001;26:303-29.
Princiotta F. Global Climate Change , The Technology Challenge. Springer Dordrecht Heidelberg. 2011;38.
Venkat G.N. CK, Ahmed E., NagendraBabu V. Comparative study on mechanical properties and quality of concrete by part replacement of cement with silica fume, metakaolin and GGBS by using M−Sand as fine aggregate. Materials Today: Proceedings. 2021;43.
Liu G. FMVA, Brouwers J. H. . Waste glass as binder in alkali activated slag–fly ash mortars. Materials and Structures. 2019;52.
Cobîrzan N. BAA, Moşonyi E. Investigation of the natural pozzolans for usage in cement industry. Procedia Technol. 2015;19:506-11.
Ranjbar M.K. MR, Mousavi Y., Yosefi S. Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete. Construction and Building Materials. 2013;47:806-13.
Nie CZ. Q. ZC, Shu X., He Q., Huang B. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China. materials. 2014;7.(5)
Gökçe H. HD, Ramyar K. Effect of fly ash and silica fume on hardened properties of foam concrete. Construction and Building Materials. 2019;194:1-11.
Song H. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—An overview. Journal of Hazardous Materials. 2006;138(2):226-33.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. C618 2014.
Alavi Nia A. HM, Nili M., Afrough Sabet V. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. International Journal of Impact 2012;46:62-73.
Mohamed O.A. N, O.F. Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Frontiers of Structural and Civil Engineering. 2017;11:406–11.
Adesina A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges. 2020;1.
Miller S.A. HG, Myers R.J., Harvey J.T. Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Eatrh. 2021;4(10):1398-411.
K. M. Greening of the concrete industry for sustainable development. Concr Int. 2002;24:23-8.
Kim S.W. JSJ, Kang D.H., Ahn K.L., Yun H.D. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete. Materials. 2015;8:7309–21.
Yang K.-H. SJ-K, Song K.-I. Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production. 2015;39:265-72.
Yang K-H. JY-B, Cho M-S., Tae S-H. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production. 2015;103:1-10.
Kelechi S.E. AM, Mohammed A.,Obianyo I.I., Ibrahim Y.E. Equivalent CO2 Emission and Cost Analysis of Green Self-Compacting Rubberized Sustainability. 2022;14:137.
Habert G. DE, Šajna A.,Rossi P. Lowering the global warming impact of bridge rehabilitations by using Ultra High Performance Fibre Reinforced Concretes. Ce ment & Concre te Composite s. 2013;38:1-11.
Seo Y. Estimation of materials-induced CO2 emission from road construction in Korea. Renewable and Sustainable Energy Reviews. 2013;26:625–31.
Müller H.S. HM, Vogel M. Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Construction and Building Materials. 2014;67:321-37.
Kawai K. ST, Kobayashi K.,Sano S. Inventory Data and Case Studies for Environmental Performance Evaluation of Concrete Structure Construction. Journal of Advanced Concrete Technology. 2005;3(3):435-56.
_||_
Root T. L TPJ, Hall K, Schneider S, Rosenzweig C, Pounds A,. Fingerprints of global warming on wild animals and plants. nature. 2003;421:57-60.
Stocker T.F. QD, Plattner G., Tignor M., Allen S. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The Physical Science Basis. 2013(Cambridge University Press):1535PP.
AO. Greenhouse gas emission inventory and quantifying regional compatible mitigation plans-horizon 2030 (case study: Guilan province, Iran). Iranian Journal of Health and Environment. 2022;15(1):121-36.
Kweku D BO, Maxwell A, Ato Desmond K,Danso K, Oti-Mensah E, Quachie A, Adormaa B. Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research & Reports. 2018;17. (6)
Hallsdóttir B.S. KR, Gudmundsson J. National Inventory Report 2007 -ICELAND National Inventory Report Iceland 2007 Submitted under the United Nations Framework Convention on Climate Change. 2007.
Rahimpour M.R. FM, Makarem M.A. Advances in Carbon Capture : Methods, Technologies and Applications. 1st Edition ed. Kelvin O.Yoro MOD, editor: Elsevier Science, 2020; 2020. 570 p.
Worrell E. PL, Martin N., Hendriks C.,Meida L. Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ. 2001;26:303-29.
Princiotta F. Global Climate Change , The Technology Challenge. Springer Dordrecht Heidelberg. 2011;38.
Venkat G.N. CK, Ahmed E., NagendraBabu V. Comparative study on mechanical properties and quality of concrete by part replacement of cement with silica fume, metakaolin and GGBS by using M−Sand as fine aggregate. Materials Today: Proceedings. 2021;43.
Liu G. FMVA, Brouwers J. H. . Waste glass as binder in alkali activated slag–fly ash mortars. Materials and Structures. 2019;52.
Cobîrzan N. BAA, Moşonyi E. Investigation of the natural pozzolans for usage in cement industry. Procedia Technol. 2015;19:506-11.
Ranjbar M.K. MR, Mousavi Y., Yosefi S. Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete. Construction and Building Materials. 2013;47:806-13.
Nie CZ. Q. ZC, Shu X., He Q., Huang B. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China. materials. 2014;7.(5)
Gökçe H. HD, Ramyar K. Effect of fly ash and silica fume on hardened properties of foam concrete. Construction and Building Materials. 2019;194:1-11.
Song H. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—An overview. Journal of Hazardous Materials. 2006;138(2):226-33.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. C618 2014.
Alavi Nia A. HM, Nili M., Afrough Sabet V. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. International Journal of Impact 2012;46:62-73.
Mohamed O.A. N, O.F. Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Frontiers of Structural and Civil Engineering. 2017;11:406–11.
Adesina A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges. 2020;1.
Miller S.A. HG, Myers R.J., Harvey J.T. Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Eatrh. 2021;4(10):1398-411.
K. M. Greening of the concrete industry for sustainable development. Concr Int. 2002;24:23-8.
Kim S.W. JSJ, Kang D.H., Ahn K.L., Yun H.D. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete. Materials. 2015;8:7309–21.
Yang K.-H. SJ-K, Song K.-I. Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production. 2015;39:265-72.
Yang K-H. JY-B, Cho M-S., Tae S-H. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production. 2015;103:1-10.
Kelechi S.E. AM, Mohammed A.,Obianyo I.I., Ibrahim Y.E. Equivalent CO2 Emission and Cost Analysis of Green Self-Compacting Rubberized Sustainability. 2022;14:137.
Habert G. DE, Šajna A.,Rossi P. Lowering the global warming impact of bridge rehabilitations by using Ultra High Performance Fibre Reinforced Concretes. Ce ment & Concre te Composite s. 2013;38:1-11.
Seo Y. Estimation of materials-induced CO2 emission from road construction in Korea. Renewable and Sustainable Energy Reviews. 2013;26:625–31.
Müller H.S. HM, Vogel M. Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Construction and Building Materials. 2014;67:321-37.
Kawai K. ST, Kobayashi K.,Sano S. Inventory Data and Case Studies for Environmental Performance Evaluation of Concrete Structure Construction. Journal of Advanced Concrete Technology. 2005;3(3):435-56.