ارائه مدل بهینه برای سامانه مدیریت پسماند شهری با استفاده از الگوریتم ژنتیک مبتنی بر منطق فازی ( مطالعه موردی : شهر تهران)
محورهای موضوعی :
مدیریت پسماند
منیره آهنی
1
,
رضا ارجمندی
2
,
حسن هویدی
3
,
جمال قدوسی
4
,
محمد رضا میری لواسانی
5
1 - دکتری مدیریت محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.
2 - دانشیار، گروه مدیریت محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران *( مسئول مکاتبات).
3 - استادیار، گروه مدیریت، برنامه ریزی و آموزش محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران.
4 - دانشیار، گروه مدیریت محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
5 - دانشیار، گروه مدیریت محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
تاریخ دریافت : 1396/05/23
تاریخ پذیرش : 1396/12/09
تاریخ انتشار : 1400/01/01
کلید واژه:
الگوریتم ژنتیک,
مدل بهینه,
منطق فازی,
مدیریت پسماند شهری,
هزینه,
چکیده مقاله :
زمینه و هدف : در سال های اخیر انواع مدل ها به منظور ارزیابی زیرسامانه های مدیریت پسماند شهر تهران و انتخاب گزینه برتر مدیریت پسماند مورد بررسی و استفاده قرار گرفته اند. ولی همچنان معضل دفع نهایی پسماند شهر تهران از مسایل مهم مرتبط با مدیریت محیط زیستی این کلان شهر می باشد. هدف از تحقیق حاضر ارایه یک مدل به منظور تخصیص مقادیر بهینه سالانه پسماند تهران به زیر سامانه های مدیریت پسماند در جهت رسیدن به بیش ترین بهره وری، کاهش هزینه و افزایش درآمد سامانه خواهد بود.روش بررسی : ابتدا با مراجعه به مجتمع آرادکوه تهران و مصاحبه حضوری با کارشناسان و با استفاده از اطلاعات ثبت شده در مجتمع آرادکوه داده های مورد نیاز تحقیق جمع آوری گردید. سپس مدل پیشنهادی تحقیق به منظور تخصیص مقادیر بهینه سالانه پسماند با در نظرگرفتن تمامی قیود به 5 زیرسامانه بازیافت، کمپوست هوازی، هاضم بی هوازی، زباله سوز، دفن بهداشتی با استفاده از الگوریتم ژنتیک مبتنی بر منطق فازی با هدف کاهش هزینه کل سامانه مدیریت پسماند شهری در محیط متلب اجرا و نتایج آن تجزیه و تحلیل شد .بافته ها: نتایج قابل توجه تحقیق حاضر نشان داد با افزایش میزان ظرفیت زیر سامانه های دارای هزینه کمتر و سودآوری بیش تر، سامانه الزاما به سمت بهینه تر شدن میل نخواهد کرد و مقادیر پسماند تخصیص داده شده به میزان 750000، 960000، 182000، 325000، 780000 تن در سال به زیر سامانه های بازیافت، کمپوست هوازی، هاضم بی هوازی، زباله سوز و دفن بهداشتی به ترتیب به عنوان بهینه ترین حالت برآورد شد.بحث و نتیجه گیری : با توجه به نتایج مدل بهینه پیشنهادی تحقیق، لازم است جریان و روند تخصیص بهینه پسماند سالانه شهر تهران به زیر سامانه های بازیافت، کمپوست هوازی، هاضم بی هوازی، زباله سوز و دفن بهداشتی با دقت بیش تری جهت افزایش بهره وری سالانه سامانه مدیریت پسماند شهر تهران دنبال شود .
چکیده انگلیسی:
Background and Purpose: In recent years, a variety of models have been used to evaluate the waste management systems in Tehran in order to select the best waste management options. But the problem of the final disposal of waste in Tehran is still one of the issues related to the environmental management of the metropolis. The purpose of this study is to provide one model for allocating optimal annual quantities of waste to waste management subsystems of Tehran in order to achieve the highest efficiency, reduce costs and increase system revenue.Materials and Methods: In this research, first by referring to the Arad Kooh complex in Tehran and interviewing with experts and using the information recorded in this complex, the required data was collected. Then, an optimal model proposed for allocating optimal annual amount of municipal waste with considering all of limitations to 5 sub-systems of recycling, aerobic compost, anaerobic digestion, incinerator , landfill using genetic algorithm improved by fuzzy logic with the aim of reducing the total cost of the municipal waste management system in the MATLAB environment and its results were analyzed.Findings: The significant results showed with increasing capacity the subsystems with lower cost and more profitability, the system will not necessarily seek to be optimized and optimal amount of waste allocated to each of the subsystems such as recycling, aerobic compost, anaerobic digestion, incinerator and landfill were estimated about 750,000, 960000, 182000, 325000, 780000 tons in each year, respectively.Discussion and Conclusion: According to the results of the optimal model proposed in this study, it is necessary to carefully follow the flow and optimal allocation of waste from the annual production of Tehran to each of the following subsystems: recycling, aerobic compost, anaerobic digestion, incinerator and landfill in order to achieve the high annual efficiency for municipal solid waste management system in Tehran city.
منابع و مأخذ:
Nzeadibe T. Ajaero C. 2010. Informal waste recycling and urban governance in Nigeria: Some experiences and policy implications. Handbook of Environmental Policy, Nova Science Publishers, pp.245–264.
Singh R. Singh P. Araujo A. Hakimi Ibrahim M. Sulaiman O .2011.Management of urban solid waste: Vermi composting a sustainable option. Resources, Conservation and Recycling, Vol. 55 , pp.719–729
Guerrero L. Maas G. Hogland W.2013.Solid waste management challenges for cities in developing countries. Waste Management,Vol. 33, pp. 220–232
Pires A. Martinho G. Chang N .2011.Solid waste management in European countries: A review of systems analysis techniques. Environmental Management, Vol. 92, pp.1033–1050
Minoglou M. Komilis D.2013.Optimizing the treatment and disposal of municipal solid wastes using mathematical programming – A case study in a Greek region. Resources Conversation and Recycling, Vol.80, pp.46-57
Holland J. 1975. Adaption in natural and artificial systems, an introductory analysis with application to biology control and artificial intelligence.The University of Michigan Press, Ann Arbor.
Guo H. Feng Y. Hao F. Zhong S. Li S .2014. Dynamic fuzzy logic control of genetic algorithm probabilities. Journal of Computers, Vol. 9, pp.22-26
Vannucci M. Colla V .2015. Fuzzy adaptation of cross over and mutation rates in genetic algorithm based on population performance . Journal of Intelligent &Fuzzy Systems,Vol. 28, pp.1805-1818
Feng Y. Dynamic fuzzy logic control of genetic algorithm probabilities. Master Thesis, Dalarna University, Sweden, 2008.
Jie W. Chi M. Dezheng Z. Ye X .2018. Municipal solid waste management and green house gas emission control through an inexact optimization model under interval and random uncertainties. Engineering Optimization, pp.1-15
Lyeme H. Allen M .2016. Implementation of a goal programming model for solid waste management : a case study of dares salaam –Tanzania. International Journal for Simulation and Multi Diciplinary Design Optimization, Vol.8, pp.1-10
Mavrotas G .2015. Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy.Sustainable Energy Reviews, Vol.51, pp. 1205-1222
Badran M. El-Haggar S .2006.Optimization of municipal solid waste management in Port Said – Egypt.Waste Management ,Vol.26, pp.534–545
Minciardi R .2008.Multi-objective optimization of solid waste flows: Environmentally sustsinable strategies for municipalities.Waste Management, Vol. 28, pp. 2202-2212
Galante F. Aiello G. Enea M. Panascia E .2010. A multi-objective approach to solid waste management.Waste Management, Vol.30, pp.1720–1728
Noche B. Rhoma F. Chinakupt T. Jawale M. Optimization model for solid waste management system network design case study. In: Proceedings of the 2nd international conference on computer and automation engineering: 2010. pp. 230–236
Guo P. Huang G .2010. Interval –parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties. Waste Management, Vol .30, pp.521-531
Cucchiella F .2014. Strategic municipal solid waste management: a quantitative model for Italian regions. Energy Conversion and Management,Vol. 77, pp.709-720
Yu H .2015.Optimization of long- term performance of municipal solid waste management system: A bi-objective mathematical model . International Journal of Energy and Environment, Vol.6, pp.153-164
Samieefar, R. "Mathematical modeling of municipal solid waste management (Case study: Tehran city)", Doctoral Thesis in Environmental Engineering, University of Tehran, Faculty of Environment , 2016; pp. 62-73(In Persian).
Nasrollahi, S. " Study and feasibility of estimating the minimum cost and emissions of municipal solid waste disposal by compost method using operational research techniques in Tehran", Master's Thesis in Agricultural Engineering, University of Tehran, Faculty of Agriculture, 2015; pp. 26 – 27(In Persian).
Tehran waste management organization, Tehran Municipality, Iran, Statistical Report of 2016 (In Persian).
Goldberg E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing .
_||_
Nzeadibe T. Ajaero C. 2010. Informal waste recycling and urban governance in Nigeria: Some experiences and policy implications. Handbook of Environmental Policy, Nova Science Publishers, pp.245–264.
Singh R. Singh P. Araujo A. Hakimi Ibrahim M. Sulaiman O .2011.Management of urban solid waste: Vermi composting a sustainable option. Resources, Conservation and Recycling, Vol. 55 , pp.719–729
Guerrero L. Maas G. Hogland W.2013.Solid waste management challenges for cities in developing countries. Waste Management,Vol. 33, pp. 220–232
Pires A. Martinho G. Chang N .2011.Solid waste management in European countries: A review of systems analysis techniques. Environmental Management, Vol. 92, pp.1033–1050
Minoglou M. Komilis D.2013.Optimizing the treatment and disposal of municipal solid wastes using mathematical programming – A case study in a Greek region. Resources Conversation and Recycling, Vol.80, pp.46-57
Holland J. 1975. Adaption in natural and artificial systems, an introductory analysis with application to biology control and artificial intelligence.The University of Michigan Press, Ann Arbor.
Guo H. Feng Y. Hao F. Zhong S. Li S .2014. Dynamic fuzzy logic control of genetic algorithm probabilities. Journal of Computers, Vol. 9, pp.22-26
Vannucci M. Colla V .2015. Fuzzy adaptation of cross over and mutation rates in genetic algorithm based on population performance . Journal of Intelligent &Fuzzy Systems,Vol. 28, pp.1805-1818
Feng Y. Dynamic fuzzy logic control of genetic algorithm probabilities. Master Thesis, Dalarna University, Sweden, 2008.
Jie W. Chi M. Dezheng Z. Ye X .2018. Municipal solid waste management and green house gas emission control through an inexact optimization model under interval and random uncertainties. Engineering Optimization, pp.1-15
Lyeme H. Allen M .2016. Implementation of a goal programming model for solid waste management : a case study of dares salaam –Tanzania. International Journal for Simulation and Multi Diciplinary Design Optimization, Vol.8, pp.1-10
Mavrotas G .2015. Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy.Sustainable Energy Reviews, Vol.51, pp. 1205-1222
Badran M. El-Haggar S .2006.Optimization of municipal solid waste management in Port Said – Egypt.Waste Management ,Vol.26, pp.534–545
Minciardi R .2008.Multi-objective optimization of solid waste flows: Environmentally sustsinable strategies for municipalities.Waste Management, Vol. 28, pp. 2202-2212
Galante F. Aiello G. Enea M. Panascia E .2010. A multi-objective approach to solid waste management.Waste Management, Vol.30, pp.1720–1728
Noche B. Rhoma F. Chinakupt T. Jawale M. Optimization model for solid waste management system network design case study. In: Proceedings of the 2nd international conference on computer and automation engineering: 2010. pp. 230–236
Guo P. Huang G .2010. Interval –parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties. Waste Management, Vol .30, pp.521-531
Cucchiella F .2014. Strategic municipal solid waste management: a quantitative model for Italian regions. Energy Conversion and Management,Vol. 77, pp.709-720
Yu H .2015.Optimization of long- term performance of municipal solid waste management system: A bi-objective mathematical model . International Journal of Energy and Environment, Vol.6, pp.153-164
Samieefar, R. "Mathematical modeling of municipal solid waste management (Case study: Tehran city)", Doctoral Thesis in Environmental Engineering, University of Tehran, Faculty of Environment , 2016; pp. 62-73(In Persian).
Nasrollahi, S. " Study and feasibility of estimating the minimum cost and emissions of municipal solid waste disposal by compost method using operational research techniques in Tehran", Master's Thesis in Agricultural Engineering, University of Tehran, Faculty of Agriculture, 2015; pp. 26 – 27(In Persian).
Tehran waste management organization, Tehran Municipality, Iran, Statistical Report of 2016 (In Persian).
Goldberg E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing .