حذف گاز NO2 به وسیله برخی جاذبهای طبیعی با استفاده از روش جذب سطحی
محورهای موضوعی :
آلودگی هوا
حسین دشتی خویدکی
1
*
,
راضیه جعفری
2
,
موسی سلیمانی
3
1 - استادیار، گروه شیمی، دانشکده علوم پایه، دانشگاه آیت ا... بروجردی، بروجرد، ایران. *(مسوول مکاتبات)
2 - کارشناسی ارشد، گروه شیمی، دانشکده علوم پایه، دانشگاه آیت ا... بروجردی، بروجرد، ایران.
3 - استادیار، گروه شیمی، دانشکده علوم پایه، دانشگاه آیت ا... بروجردی، بروجرد، ایران.
تاریخ دریافت : 1398/02/23
تاریخ پذیرش : 1398/07/10
تاریخ انتشار : 1401/05/01
کلید واژه:
آلایندههای محیط زیست,
ایزوترمهای جذب سطحی,
گاز NO2,
جاذبهای طبیعی,
جذب سطحی,
چکیده مقاله :
زمینه و هدف: نیتروژن دی اکسید (NO2) یکی از خطرناک ترین آلاینده ها در محیط زیست است. NO2 در غلظت های بالا قطعا سبب ایجاد آسیب های ریوی می شود. مجاورت با مقادیر متوسط آن (ppm 50) در یک دوره کوتاه مدت، سوزش چشم، بینی و گلو، سرفه، خلط خونی، تنگی نفس و درد سینه را ایجاد می کند و تماس با غلظت های بالای آن (بالاتر از ppm 100) می تواند به ادم ریوی و نهایتا مرگ منجر شود. بنابراین، حذف این آلاینده از هوا اهمیت به سزایی برای محیط زیست دارد. این مطالعه با هدف حذف گاز NO2 به وسیله برخی جاذب های طبیعی با استفاده از روش جذب سطحی انجام گرفته است.
روش بررسی: در این کار، حذف گاز NO2 به روش جذب سطحی، بر روی برخی جاذب های طبیعی شامل پوسته تخم مرغ، پوست درخت اوکالیپتوس، دانه گیاه رازیانه، برگ درخت کاج، تفاله چای و کاه گندم مورد بررسی قرار گرفته است. همچنین، اثر برخی شرایط تجربی بر جذب سطحی شامل طول ستون جاذب و مقدار NO2 اولیه بررسی شده است.
یافته ها: مطلوب ترین درصد جذب با طول ستون جاذب 50 سانتی متر و مقدار NO2 اولیه 3/6 میلی مول به دست می آید. علاوه بر این، دانه گیاه رازیانه و پوسته تخم مرغ می توانند به ترتیب 8/96 و 1/92% از گاز NO2 را در شرایط بهینه جذب نمایند.
بحث و نتیجه گیری: از میان جاذب های استفاده شده، مناسب ترین جاذب ها برای فرایند جذب سطحی، دانه گیاه رازیانه و پوسته تخم مرغ می باشند. همچنین، داده های تعادلی با ایزوترم های جذب سطحی لانگمویر، فروندلیش، تمکین و هارکین- جورا برازش شدند و نتایج حاصل نشان داد که ایزوترم هارکین- جورا بهتر از سایر ایزوترم ها، نتایج تجربی را توصیف می کند.
چکیده انگلیسی:
Background and Objective: Nitrogen dioxide (NO2) is one of the most dangerous pollutants in the environment. NO2 certainly causes lung damage at high concentrations. Exposure to its moderate levels (50 ppm) for a short period may produce irritation of the eyes, nose, and throat, cough, hemoptysis, dyspnea, and chest pain and contact to its high concentrations (> 100 ppm) can result in pulmonary edema, which can be fatal. Therefore, it is very important for environment the removing of the pollutant from air. The aim of this study has been the removal of NO2 gas by some natural adsorbents by using the adsorption method.
Material and Methodology: In this work, it has been investigated the removal of NO2 gas by adsorption on different natural adsorbents including eggshell, eucalyptus bark, fennel seed, pine leaf, tea waste, and wheat straw. It was also studied the effect of some experimental conditions including adsorbent column length and initial NO2 amount on the adsorption percentage.
Findings: The most desirable adsorption percentage obtained with adsorbent column length 50 cm and initial NO2 amount 6.3 mmol. In addition, Fennel seed and eggshell can adsorb 96.8 and 92.1% of NO2 gas in the optimum conditions, respectively.
Discussion and Conclusion: Among the used adsorbents, the most appropriate adsorbents are fennel seed and eggshell for the adsorption process. In addition, it was correlated the equilibrium data with the adsorption isotherms such as the Langmuir, Freundlich, Temkin, and Harkin-Jura and the results showed that Harkin-Jura isotherm describes the experimental results better than the other isotherms.
منابع و مأخذ:
Douglas, W. W., Hepper, N. G., Colby, T. V., 1989. Silo-filler's disease. Mayo Clinic Proceedings, Vol. 64, pp. 291-304.
Chang, L., Mercer, R. R., Stockstill, B. L., 1988. Effects of low levels of NO2 on terminal bronchial cells and its relative toxicity compared to oxygen. Toxicology and Applied Pharmacology, Vol. 90, pp. 451-64.
Freeman, G., Crane, S. C., Furiosi, N. J., 1972. Covert reduction in ventilatory surface in rat during prolonged exposure to subacute nitrogen dioxide. The American Review of Respiratory Disease, Vol. 106, pp. 563-79.
Rosenstock, L., 1987. Occupational medicine: state of the art reviews. Hanley & Belfus, Philadelphia, pp. 303-305.
Fernandez-Caldas, E., Fox, R. W., 1992. Environmental control of air pollution. Medical Clinics of North America, Vol. 76, pp. 935-952.
Li, W., Wu, C., Fang, H. L., Shi, Y., Lei, L. C., 2006. Study on NO2 absorption by ascorbic acid and various chemicals. Journal of Zhejiang University Science B, Vol. 7, pp. 38-42.
S Environmental Protection Agency, 1991. Alternative Control Technques Document-Nitric and Adipic Acid, EPA Publication, No. 450/3-91-026.
Dabrowski, A., 2000. Adsorption-from theory to practice. Advances in Colloid and Interface Science, Vol. 93, pp. 135-224.
Gray, P. G., 1993. A Fundamental Study on the Removal of Air Pollutants (Sulfur Dioxide, Nitrogen Dioxide and Carbon Dioxide by Adsorption on Activated Carbon. Gas Separation and Purification, Vol. 7, pp. 213-224.
Pietrzak, R., 2009. Active Carbons Obtained from Bituminous Coal for NO2 Removal under dry and wet conditions at room temperature. Energy Fuels, Vol. 23, pp. 3617-3624.
Nowicki, P., Pietrzak, R., 2010. Carbonaceous adsorbents prepared by physical activation of pine sawdust and their application for removal of NO2 in dry and wet conditions. Bioresource Technology, Vol. 101, pp. 5802-5807.
Belala, Z., Belhachemi, M., Jeguirim, M., 2014. Activated carbon prepared from date pits for the retention of NO2 at low temperature. International Journal of Chemical Reactor and Engineering, Vol. 12, pp. 717-726.
Belhachemi, M., Jeguirim, M., Limousy, L., Addoun, F., 2014. Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: effect of porosity and surface chemistry. Chemical Engineering Journal, Vol. 253, pp. 121-129.
Hofman, M., Pietrzak, R., 2011. Adsorbents obtained from waste tires for NO2 removal under dry conditions at room temperature. Chemical Engineering Journal, Vol. 170, pp. 202-208.
Mortazavi, S. B., Yarahmadi, R., Omidkhah, M. R., Asilyan, H., Moridi, M., 2008. Treatment of Nitrogen Oxides in Air Using Modified ZSM-5 Zeolite. Journal of environmental science and technology, Vol. 11, pp. 61-75 (In Persian)
Olsson, L., Sjövall, H., Blint, R. J., 2009. Detailed Kinetic Modeling of NOx Adsorption and NO Oxidation over Cu-ZSM-5. Applied Catalysis B: Environmental, Vol. 87, pp. 200– 210.
Apostolescu, N., Schröder, T., Kureti, S., 2004. Study on the Mechanism of the Reaction of NO2 with Aluminium Oxide. Applied Catalysis B: Environmental, Vol. 51, pp. 43–50.
Sivachandiran, L., Thevenet, F., Gravejat, P., Rousseau, A., 2013. Investigation of NO and NO2 Adsorption Mechanisms on TiO2 at Room Temperature. Applied Catalysis B: Environmental, Vol. 142, pp. 196–204.
Nowicki, P., Skibiszewska, P., Pietrzak, R., 2013. NO2 removal on adsorbents prepared from coffee industry waste materials, Adsorption, Vol. 19, pp. 521–528.
Arthisree, S. R., Sirisha, D., Gandhi, N., 2013. Adsorption of Aqueous solution of NO2 by
Neem Bark Dust. International Journal of ChemTech Research, Vol. 5, pp. 450-455.
Sirisha, D., Saritha, P., Gandhi, N., Asthana, S., 2016. Controlling of NO2 by Adsorption Technique using Natural Adsorbent. Research Journal of Chemical and Environmental Sciences, Vol. 4, pp. 74-81.
Barbooti, M. M., Ibraheem, N. K., Ankosh, A. H., 2011. Removal of nitrogen dioxide and sulfur dioxide from air streams by absorption in urea solution. Journal of environmental protection, Vol. 2, pp. 175-185.
Streuli, G. A., Averell, P. R., 1970. The Analytical Chemistry of Nitrogen and its Compounds, Part I. John Wiley and Sons Inc., New York.com/en/iran/yazd-climate#daylight_sunshine (accessed Jul. 12, 2020).
_||_
Douglas, W. W., Hepper, N. G., Colby, T. V., 1989. Silo-filler's disease. Mayo Clinic Proceedings, Vol. 64, pp. 291-304.
Chang, L., Mercer, R. R., Stockstill, B. L., 1988. Effects of low levels of NO2 on terminal bronchial cells and its relative toxicity compared to oxygen. Toxicology and Applied Pharmacology, Vol. 90, pp. 451-64.
Freeman, G., Crane, S. C., Furiosi, N. J., 1972. Covert reduction in ventilatory surface in rat during prolonged exposure to subacute nitrogen dioxide. The American Review of Respiratory Disease, Vol. 106, pp. 563-79.
Rosenstock, L., 1987. Occupational medicine: state of the art reviews. Hanley & Belfus, Philadelphia, pp. 303-305.
Fernandez-Caldas, E., Fox, R. W., 1992. Environmental control of air pollution. Medical Clinics of North America, Vol. 76, pp. 935-952.
Li, W., Wu, C., Fang, H. L., Shi, Y., Lei, L. C., 2006. Study on NO2 absorption by ascorbic acid and various chemicals. Journal of Zhejiang University Science B, Vol. 7, pp. 38-42.
S Environmental Protection Agency, 1991. Alternative Control Technques Document-Nitric and Adipic Acid, EPA Publication, No. 450/3-91-026.
Dabrowski, A., 2000. Adsorption-from theory to practice. Advances in Colloid and Interface Science, Vol. 93, pp. 135-224.
Gray, P. G., 1993. A Fundamental Study on the Removal of Air Pollutants (Sulfur Dioxide, Nitrogen Dioxide and Carbon Dioxide by Adsorption on Activated Carbon. Gas Separation and Purification, Vol. 7, pp. 213-224.
Pietrzak, R., 2009. Active Carbons Obtained from Bituminous Coal for NO2 Removal under dry and wet conditions at room temperature. Energy Fuels, Vol. 23, pp. 3617-3624.
Nowicki, P., Pietrzak, R., 2010. Carbonaceous adsorbents prepared by physical activation of pine sawdust and their application for removal of NO2 in dry and wet conditions. Bioresource Technology, Vol. 101, pp. 5802-5807.
Belala, Z., Belhachemi, M., Jeguirim, M., 2014. Activated carbon prepared from date pits for the retention of NO2 at low temperature. International Journal of Chemical Reactor and Engineering, Vol. 12, pp. 717-726.
Belhachemi, M., Jeguirim, M., Limousy, L., Addoun, F., 2014. Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: effect of porosity and surface chemistry. Chemical Engineering Journal, Vol. 253, pp. 121-129.
Hofman, M., Pietrzak, R., 2011. Adsorbents obtained from waste tires for NO2 removal under dry conditions at room temperature. Chemical Engineering Journal, Vol. 170, pp. 202-208.
Mortazavi, S. B., Yarahmadi, R., Omidkhah, M. R., Asilyan, H., Moridi, M., 2008. Treatment of Nitrogen Oxides in Air Using Modified ZSM-5 Zeolite. Journal of environmental science and technology, Vol. 11, pp. 61-75 (In Persian)
Olsson, L., Sjövall, H., Blint, R. J., 2009. Detailed Kinetic Modeling of NOx Adsorption and NO Oxidation over Cu-ZSM-5. Applied Catalysis B: Environmental, Vol. 87, pp. 200– 210.
Apostolescu, N., Schröder, T., Kureti, S., 2004. Study on the Mechanism of the Reaction of NO2 with Aluminium Oxide. Applied Catalysis B: Environmental, Vol. 51, pp. 43–50.
Sivachandiran, L., Thevenet, F., Gravejat, P., Rousseau, A., 2013. Investigation of NO and NO2 Adsorption Mechanisms on TiO2 at Room Temperature. Applied Catalysis B: Environmental, Vol. 142, pp. 196–204.
Nowicki, P., Skibiszewska, P., Pietrzak, R., 2013. NO2 removal on adsorbents prepared from coffee industry waste materials, Adsorption, Vol. 19, pp. 521–528.
Arthisree, S. R., Sirisha, D., Gandhi, N., 2013. Adsorption of Aqueous solution of NO2 by
Neem Bark Dust. International Journal of ChemTech Research, Vol. 5, pp. 450-455.
Sirisha, D., Saritha, P., Gandhi, N., Asthana, S., 2016. Controlling of NO2 by Adsorption Technique using Natural Adsorbent. Research Journal of Chemical and Environmental Sciences, Vol. 4, pp. 74-81.
Barbooti, M. M., Ibraheem, N. K., Ankosh, A. H., 2011. Removal of nitrogen dioxide and sulfur dioxide from air streams by absorption in urea solution. Journal of environmental protection, Vol. 2, pp. 175-185.
Streuli, G. A., Averell, P. R., 1970. The Analytical Chemistry of Nitrogen and its Compounds, Part I. John Wiley and Sons Inc., New York.com/en/iran/yazd-climate#daylight_sunshine (accessed Jul. 12, 2020).