مطالعه آسیبشناسی و تجمع زیستی نانوذرات اکسیدآهن (Fe2O3) در بافت کبد ماهی کپور معمولی (Cyprinus carpio)
محورهای موضوعی :
پاتوبیولوژی مقایسه ای
شیلا امیدظهیر*، رقیه خدابندهلو، فاطمه کاردل، فاطمه علمی .
1
1 - .
تاریخ دریافت : 1397/01/24
تاریخ پذیرش : 1397/01/24
تاریخ انتشار : 1397/04/01
کلید واژه:
آسیب شناسی بافتی,
تجمع زیستی,
کبد,
کپورمعمولی,
نانوذرات اکسیدآهن (Fe2O3),
چکیده مقاله :
تولید روز افزون نانوذرات و کاربرد آن در صنایع مختلف، نگرانیییهاییهایی را در رابطه با سمیت و خطر آن ها در محیط زیست مطرح کرده است. اما اطلاعات کمی در مورد سمیت و میزان سطوح ایمن آن ها شناخته شده است. این مطالعه به بررسی میزان تجمع زیستی و آسیب شناسی ناشی از نانوذرات اکسیدآهن (Fe2O3) در بافت کبد ماهی کپور معمولی پرداخته است. به این منظور ماهیهای کپور معمولی (Cyprinus carpio) پس از تهیه به آزمایشگاه منتقل و بعد از سازش در شرایط آزمایشگاهی به مدت یک هفته، به 4 تیمار تقسیم شدند. تیمار اول به عنوان شاهد در نظر گرفته شد و سایر تیمارها به ترتیب مقادیر 50، 75 و 100 میلی گرم در لیتر از نانوذرات اکسید آهن (Fe2O3) را دریافت کردند. نمونهگیری از تیمارها در روزهای 14، 21 و 28 به صورت تصادفی صورت گرفت و بافت کبد جداسازی گردید و از نظر میزان تجمع زیستی و آسیب شناسی مورد بررسی قرار گرفت. نتایج حاصل از آزمون آماری، غلظت بالاتری از آهن در تیمار 75 میلیگرم در لیتر در روز 21 در مقایسه با سایر تیمارها نشان داد (05/0>p). در بررسی آسیبشناسی، بیشترین جراحات در روز 28 در تیمار 100 میلی گرم بر لیتر به صورت دژنرسانس شدید واکوئولی و نکروز شدید هپاتوسیستها، نفوذ سلولهای آماسی و پرخونی در بافت کبد مشاهده گردید. نتایج حاصل از این پژوهش نشان داد با افزایش غلظت و مدت زمان رویارویی ماهیها با نانوذرات اکسیدآهن آسیبهای واردشده به بافت کبد افزایش و میزان تجمع آهن در بافت کبد کاهش یافته است.
چکیده انگلیسی:
Increasing production of nanoparticles and its usage in different industries has led concerns about its dangers and toxicity in the environment, but there is not enough information about their toxicity effects, and their safety is unknown. This study tried to evaluate the bioaccumulation and histopathology of iron oxide nanoparticles (Fe2O3) in liver tissues of Common carp (Cyprinus carpio). To this aim, Common carp fishes were prepared from a fish farm and transferred to the laboratory. After adapting to the laboratory conditions for a week, the fishes were divided into 4 treatments. The first treatment was considered as control and the other treatments received 50, 75 and the 100 milligrams per liter of iron oxide nanoparticles. In the days 14, 21 and 28, the fishes were randomly selected from each treatment and the liver tissues were separated and were examined for bioaccumulation and histopathology. In the present study the result of the statistical analysis showed in the day 21 of the experiment, the concentration of Iron was significantly higher than other treatments in the liver. Histopathological examination in liver showed the most lesions in treatment 4 in day28 included severe necrosis and vacuolar degeneration, infiltration of inflammatory cells mild and hyperemia. The results of present study showed by increasing of dose and exposure time of iron oxide nanoparticles (Fe2O3) the lesions in hepatocytes increased and iron concentration in liver decreased.
منابع و مأخذ:
1. افتاری، م.، راد، م. (1388): کاربرد نانو فناوری در کاهش نیروی پسا و بهینه سازی عملکرد شناورهای دریایی با استفاده از نانواکسید روی، فصلنامه علوم و فناوری دریا، 52 (52) ، 8-1.
حاجی رحیمی، ا.، فرخی، فرح.، توکمه چی، ا. (1394): بررسی تأثیر نانوذرات اکسیدآهن و روی بر بافت کبد و عضله در ماهی قزلآلای رنگینکمان (Oncorhynchus mykiss)، مجله پژوهشهای جانوری، 28 (3)، 306-293.
هدایتی، س ع .، خبازی، م.، هرسیج، م.، گرامی، م ح.، غفاری فارسانی، ح. (1393): بررسی اثر تخریبی نانوذرات مس محلول در آب بر بافت آبشش ماهی قزل آلای رنگین کمان ((Oncorhynchus mykiss، فصلنامه فیزیولوژی و بیوتکنولوژی آبزیان ، 2 (1)، 88-75.
Al-Weher, S. M. (2008): Levels of heavy metal Cd, Cu and Zn in three fish species collected from the northern Jordan valley, Jordan. Jordan. J. Biol. Sci. 1(1): 41-46.
APHA, (1998): Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington DC: 64-65.
Bancroft, J. D., Gamble, M. (2008): Theory and practice of histological techniques. Elsevier Health Sciences: 126-127.
Blaise, C., Gagné, F., Ferard, J. F., & Eullaffroy, P. (2008): Ecotoxicity of selected nano‐materials to aquatic organisms. Environ toxicol. 23(5): 591-598.
Bury, N. R., Grosell, M. 2003. Waterborne iron acquisition by a freshwater teleost fish, zebrafish Danio rerio. J. Exp. Biol. 206(19): 3529-3535.
Bury, N. R., Grosell, M., Wood, C. M., Hogstrand, C., Wilson, R. W., Rankin, J. C., Jensen, F. B. (2001): Intestinal iron uptake in the European flounder (Platichthys flesus). J. Exp. Biol. 204 (21): 3779-3787.
Chavan, V.R., Muley, D. V. (2014): Effect of heavy metals on liver and gill of fish Cirrhinus mrigala. Int. J. Curr. Microbiol. Appl. Sci. 3(5): 277-288.
Chen, P. J., Su, C. H., Tseng, C. Y., Tan, S. W., & Cheng, C. H. (2011): Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Marine. Pollut. Bull. 63 (5): 339-346.
Chen, P. J., Wu, W. L., Wu, K. C. W. (2013): The zero valent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water. Res. 47(12): 3899-3909.
Comba, S., Di Molfetta, A., & Sethi, R. (2011): A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water. Air .Soil. Pollut. 215(4): 595-607.
Food and Agricultural Organization (FAO). (1983): Manual of Methods in Aquatic Environmental Research, part 9. Analyses of metals and organochlorines in fish. FAO Fisheries Technical Paper. 212.
Garrick, M. D., Garrick, L. M. (2009): Cellular iron transport. Biochim. Biophys. Acta. 1790: 309–325.
Gregorovic, G., Kralj‐Klobucar, N., Kopjar, N. (2008): A histological and morphometric study on the tissue and cellular distribution of iron in carp Cyprinus carpioL. during chronic waterborne exposure. . J. Fish. Biol. 72(7): 1841-1846.
Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., & Barber, D. S. (2007): Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. tech. 41(23): 8178-8186.
Gupta, A.K., Gupta, M. (2005): Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterial. 26: 3995–4021.
Hartley, W., Edwards, R., and Lepp, N.W. (2004): Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ. Pollut. 131:495-504.
Hao, L., Chen, L., Hao, J., & Zhong, N. (2013): Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol. Environ. Saf. 91: 52-60.
Jung, Y. J., Kim, K. T., Kim, J. Y., Yang, S. Y., Lee, B. G., & Kim, S. D. (2014): Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes). J. Hazard. Mater. 267: 206-213.
Karthikeyeni, S., Siva Vijayakumar, T., Vasanth, S., Arul Ganesh, M. M., Subramanian, P. (2013): Biosynthesis of iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. J. Academ. Indust. Res. 10: 645-649.
Keller, A.A., McFerran, S., Lazareva, A., Suh, S. (2013): Global life cycle releases of engineered nanomaterials. J. Nano. Res. 15:1692.
Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., Jiang, G. (2009): Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxol. Environ. Saf. 72(3): 684-692.
Naeemi, A., Jamili, S., Shabanipour, N., Mashinchian, A., Shariati Feizabadi, S. (2013): Histopathological changes of gill, liver and kidney in Caspian kutum exposed to linear alkylbenzene sulfonate. Iran J. Fish. Sci. 12(4): 887-897.
Remya, A. S., Ramesh, M., Saravanan, M., Poopal, R. K., Bharathi, S., Nataraj, D. (2015): Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. J. King. Saud. Univ. Sci. 27(2): 151-160.
Sadauskas, E., Wallin, H., Stoltenberg, M., Vogel, U., Doering, P., Larsen, A., Danscher, G. (2007): Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 4(1): 10.
Saravanan, M., Suganya, R., Ramesh, M., Poopal, R. K., Gopalan, N., Ponpandian, N. (2015): Iron oxide nanoparticles induced alterations in haematological, biochemical and ionoregulatory responses of an Indian major carp Labeo rohita. J. Nano. Res.17(6): 274.
Thophon, S., Kruatrachue, M., Upatham, E. S., Pokethitiyook, P., Sahaphong, S., & Jaritkhuan, S. (2003): Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ. Pollut. 121(3): 307-320.
Van Anholt, R. D., Spanings, F. A. T., Knol, A. H., Van der Velden, J. A., Wendelaar Bonga, S. E. (2002): Effects of iron sulfate dosage on the water flea (Daphnia magna Straus) and early development of Carp (Cyprinus carpio L.). Arch. Environ. Contam. Toxicol. 42(2): 182-192.
Wang, B., He, X., Zhang, Z., Zhao, Y., & Feng, W. (2012): Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc. Chem. Res.. 46(3): 761-769.
Water Research Council (WRc) (1998): An Update to Proposed Environmental Quality Standards for Iron in Water (eds. P. Whitehouse, E. Dixon, S. Blake and K. Bailey). Final report DETR 4471/1 to the Department of the Environment, Transport and the Regions. WRc, Medmenham, Buckinghamshire.
Zhang, Y., Zhu, L., Zhou, Y., & Chen, J. (2015): Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J. Environ. Sci. 30: 223-230.
Zhu, X., Tian, S., Cai, Z. (2012): Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. 7(9): e46286.
_||_