Assessment the Effect of Concentration and Application Time of Titanium Dioxide Nanoparticles on Biochemical Traits and Seed Yield of Wheat (Triticum aestivum L.)
Subject Areas : Journal of Crop Nutrition ScienceAli Jasemnejad 1 , Payam Moaveni 2 *
1 - Department of Agronomy, Shahre-ghods Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Agronomy, Shahre-ghods Branch, Islamic Azad University, Tehran, Iran.
Keywords: Phenology, Proline, Catalase, nanotechnology,
Abstract :
Nanoparticles of titanium increase cell growth by improvement of photosynthetic and nitrogen metabolism and therefore, caused an increasing in weight of the plant. This re-search was conducted to evaluate seed yield and biochemical traits of bread wheat affected by different levels of titanium dioxide Nanoparticles in Ahvaz region, Khuzestan province, located at southwestern Iran by factorial experiment based on randomized complete blocks design with four replications during 2011-2012 growing season. The factors consisted of foliar application of titanium dioxide Nanoparticles at three growth stages (S1: Tillering, S2: Stem elongation, S3: Ripening) and different concentrations of titanium dioxide at five levels (C1: 0.01; C2: 0.03; C3: 0.05; C4: 0.07% titanium dioxide Nanoparticles and C5: 0.06% non-Nano particles of titanium dioxide or Bulk type). The results of analysis of variance indicated that the effect of spraying at different growth stage (except on harvest index and proline) and different concentration of titanium dioxide (except for proline) was significant on all measured traits. Mean comparison result showed the highest seed yield, its components and biochemical traits (expect malon di aldehyde) was achieved in 0.05% concentration at stem elongation stage, but the 0.07% concentration had a lower effect than other concentrations. It should be expected that higher concentrations of nanoparticles have inhibitory or neutral effects on growth trend.
Aliabadi, T., A. Safipour Afshar. and F. Saeid Nematpour. 2016. The effects of Nano TiO2 and Nano aluminum on the growth and some physiological parameters of wheat (Triticum aestivum). Iranian J. Plant Physiol. 6(2): 1627-1635.
Amuamuha, L., A. Pirzad. and H. Hashem Hadi. 2012. Effect of varying concentrations and time of Nano-iron foliar application on the yield and essential oil of Pot marigold. Intl. Res. J. Appl. Basic Sci. 3(10): 2085-2090.
Arora, S., P. Sharma, S. Kumar, R. Nayan, P. K. Khanna. and M. G. H. Zaidi. 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation. J. 66(3): 303-310.
Aslani, F., S, Bagheri, N. Muhd Julkapli, A. S. Juraimi, F. S. Hashemi. and A. Baghdadi. 2014. Effects of engineered Nano materials on plants growth: an overview. Sci. World J. 20(14): 641-759.
Bates, L. S., R. P, Waldren. and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. J. 39: 205-207.
Blokhin, O., E. Virolainen. and K. Fagerstedt. 2003. Antioxidant oxidative damage and oxygen deprivation stress. Ann. Rev. Bot. J. 91: 179-194.
Bradford, M. M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Bio-Chem. J. 72: 248-254.
Bradley, J., C. Raven Bier. and C. Kwan. 2012. Effect of TiO2 Nano-particles on the growth and metabolism of three species of freshwater algae. J. Nano-Part Res. 14: 913-921.
Cakmak, I. and W. Horst. 1991. Effect of aluminum on lipid per-oxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glysin max L.). Plant Physiol. J. 83: 463-468.
Carmen, I. U., P. Chithra, Q. Huang, P. Takhistov, S. Liu. and J. L. Kokini. 2003. Nanotechnology: a new frontier in food science. Food Tech. J. 57: 24-29.
Feizi, H., P. Rezvani Moghaddam, N. Shahtahmassebi. and A. Fotovat. 2012. Impact of bulk and Nano-Sized titanium di oxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem Res. J. 146: 101–106.
Fujishima, A. and X. Zhang. 2006. Titanium dioxide photo catalysis: present situation and future approaches. C. R. Chem. J. 9: 750-760.
Gao, F., F. Hong, C. Liu, L. Zheng, M. Su, X. Wu, F. Yang, C. Wu. and P. Yang. 2008. Mechanism of Nano-Anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol. Trace Element Res. J. 111: 239-253.
Gardner, F. P., R. B. Pearce. and R. L. Mitchell. 1985. Physiology of crop plants. Ames, IA: Iowa State Univ. Press. USA. 121 pp.
Giannopolitis, C. N. and S. K. Reis. 1997. Super oxide dismutase. I. Occurrence in higher plant. Plant Physiol. J. 59: 309-314.
Haghighi, M. Z., Z. Afifpour. and M. Mozafarian. 2012. The Effect of n-si on tomato seed germination under salinity levels. J. Biol. Environ. Sci. 6(16): 87-90.
Harrison, C. C. 1996. Evidence for intra mineral macromolecules containing protein from plant silicas. Phyto-Chem.J. 41: 37-42.
Heath, R. L and L. Packer. 1968. Photo per oxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid per oxidation. Arch. Bio-Chem. Bio-Physics. J. 125: 189-198.
Hong, F., F. Yang, Q. Gao, Z. Wan, F. Gu, C. Wu, Z. Ma, J. Zhou. and P. Yang. 2005. Effect of Nano TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Element Res. J. 105: 269-279.
Jaberzadeh, A., P. Moaveni, H. R. Tohidi Moghadam. and H. Zahedi. 2013. Influence of bulk and Nano-Particles Titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca.J. 41: 201-207.
Janmohammadi, M., T. Amanzadeh, N. Sabaghnia. and Sh. Dashti. 2016. Impact of foliar application of Nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica. J. 107(2): 265- 276.
Kasem, K. K. and M. Dahn. 2010. Photo dissociation of water using colloidal nanoparticles of doped titanium (IV) oxide semiconductors for hydrogen production. Current Sci.J. 99: 1068-73.
Kim, J., S. Kim. and S. Lee. 2011. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka(Oryzias latipes) and the cladoceran Daphnia magna. Nano-Toxicol. J. 5: 208-214.
Lei, Z., S. Mingyu, W. Xiao, L. Chao, Q. Chunxiang, C. Liang, H. Hao, L. Xiao- qing. and H. Fashui. 2008. Antioxidant stress is promoted by Nano-Anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem Res. J. 121: 69-79.
Lin, D. and B. Xing. 2007. Phytotoxicity of Nano-particles: inhibition of seed germination and root growth. Environ. Pollution. J. 150: 243–250.
Liu, R. and R. Lal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. J. 514: 131-139.
Lu, C. M., C. Y. Zhang, J. Q. Wen. and G. R. Wu. 2002. Effects of Nano material on germination and growth of soybean. Soybean Sci. J. 21 (3): 168–171.
Ma, X., J. Geiser-Lee, Y. Deng. and A. Kolmakov. 2010. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci. Total Environ. J. 408(16): 3053-3061.
Mahmoodzadeh, H. and R. Aghili. 2014. Effect on germination and early growth characteristics in wheat (Triticum aestivum L.) seeds exposed to TiO2 Nano-Particles. J. Chem. Health. Risk. 4(1): 29–36.
Mahmoodzadeh, H., M. Nabavi, H. Kashefi. 2013a. Effect of Nano scale titanium dioxide particles on the germination and growth of Canola (Brassica napus L.). J. Ornamental Horti. Plants. 3(1): 25-32.
Mahmoodzadeh, H., R. Aghili. and M. Nabavi .2013b. Physiological effects of TiO2 Nano-Particles on wheat (Triticum aestivum L.). Tech. J. Eng. Appl. Sci. J. 14: 1365-1370.
Mingyu, S., H. Fashui, L. Chao, W. Xiao, L. Xiaoqing, C. Liang, G. Fengqing, Y. Fan. and L. Zhongrui. 2007. Effects of Nano-Anatase TiO2 on absorption, distribution of light, and photo reduction activities of chloroplast membrane of Spinach. Biol. Trace Element Res.J. 118: 120-130.
Mohammadi, R., R. Maali-Amiri. and A. Abbasi. 2013. Effect of TiO2 Nano-Particles on chickpea response to cold stress. Biol. Trace Elem Res. 152(3): 403-410.
Morteza, E., P. Moaveni, H. A. Farahani. and M. Kiyani. 2013. Study of photosynthetic pigments changes of maize (Zea mays L.) under Nano TiO2 spraying at various growth stages. Springer Plus. 2(1): 1-5. DOI: 10.1186/2193-1801-2-247.
Naderi, M. R. and A. Danesh-Shahraki. 2013. Nano fertilizers and their roles in sustainable agriculture. Intl. J. Agric. Crop Sci. 5(19): 2229-2232.
Owolade, O. F., D. O. Ogunleti. and M. O. Adenekan. 2008. Titanium dioxide affects diseases, development and yield of edible cowpea. Electronic J. Environ. Agric. Food Chem. 7: 2942- 2947.
Pokhrel, L. R. and B. Dubey. 2013. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. J. 45(2): 321-332.
Reddy, B. M., I. Ganesh. and A. Khan. 2004. Stabilization of Nano sized titanium-anatase for high temperature catalytic applications. J. Molecular Catalysis A: Chemical.223: 295-304.
Ren, H. X., L. Liu, C. Liu, S. Y. He, J. Huang, J. L. Li. and N. Gu. 2011. Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean. J. Biomed Nano-Tech. 7(5): 677-684.
Singh Duhan, J., R. Kumar, N. Kumara, P. Kaur, K. Nehra. and S. Duhan. 2017. Nanotechnology: The new perspective in precision agriculture. Bio-Tech. Rep. J. 15: 11-23.
Shaw, A. K. and Z. Hossain. 2013. Impact of Nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere. J. 93(6): 906-915.
Sheykhbaglou, R., M. Sedghi, M. Tajbakhsh Shishvan. and R. Seyed Sharifi. 2010. Effect of Nano-iron particles on agronomic traits of soybean. Not. Sci. Biol. J. 2(2): 112-113.
Su, M., X. Wu, C. Liu, C. Qu, X. Liu, L. Chen, H. Huang. and F. Hong. 2007. Promotion of energy transfer and oxygen evolution in spinach photosystem II by Nano- Anatase TiO2. J. Biol. Trace Elem Res. 119: 183-192.
Taieb Baiazidi Aghdam, M., H. Mohammadi. and M. Ghorbanpour. 2016. Effects of Nano particulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum under well-watered and drought stress conditions. Brazilian J. Bot. 39(1): 139-146.
Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu. and P. Yang. 2006. Influences of Nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Trace Elem Res. J. 110(2): 179-90.
Zheng, L., F. Hong, S. Lu. and C. Liu. 2005. Effect of Nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Element Res. J. 104: 83-91.