Metabolic and Hormonal Effects of COVID-19 and the Role of Exercise in Coping with It during Infection and Recovery
Subject Areas :
Journal of Chemical Health Risks
Saeid Fatolahi
1
,
Shahnaz Shahrbanian
2
*
,
Nemat Nematollahi
3
,
Kelly E. Johnson
4
,
Ayoub Saeidi
5
1 - Department of Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
2 - Department of Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
3 - Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
4 - Department of Exercise and Sport Science, Coastal Carolina University, Conway, SC, 29528, USA
5 - Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
Received: 2021-11-14
Accepted : 2022-05-01
Published : 2023-12-01
Keywords:
Obesity,
Physical Activity,
Hormones,
Diabetes,
COVID-19,
Abstract :
Infection with the COVID-19 virus has a wide range of adverse effects on the metabolic and endocrine systems, and in fact, one of the main ways of influencing this new virus has been through these systems. This is why people with chronic underlying diseases such as obesity, diabetes, metabolic syndrome, and hypertension show more severe symptoms and higher mortality rates. On the other hand, exercise can reduce the symptoms resulting from disease and reduce its lasting effects by improving metabolic health and modulating hormonal mechanisms. Due to the new and unknown nature of COVID-19, clinical trials and experimental studies have not been performed to investigate the effect of exercise on mortality or severity and persistence of symptoms in patients with COVID-19, but exercise with modifications can improve insulin resistance, reduce the amount of mass, improve fat and anti-inflammatory properties, and increase the expression of ACE2 receptors, intracellular metabolism and other pathways that all can play a positive role in combating the virus. Due to the unknown aspects of the mechanism of COVID-19 and exercise, more studies need to be done on the dose-response relationship of exercise before and after the infection in different age groups and specific groups.
References:
1. Liu S., Selvaraj P., Lien C. Z., Nunez I. A., Wu W., Chou C.K., Wang T. T., 2021. The PRRA insert at the S1/S2 site modulates cellular tropism of SARS-CoV-2 and ACE2 usage by the closely related Bat raTG13. Journal of virology. 95(11), e01751-20.
Guan W.j., Ni Z.y., Hu Y., Liang W.h., Ou C.q., He J.x., Liu L., Shan H., Lei C.l., Hui D.S., 2020. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 382(18):1708-20.
Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan China. Jama. 323(11), 1061-9.
Zahra Syeda M., Diabakte K., Geng X., Ji F., Ouyang L., Pan S., Fu Z., Li Y., Jia F., Chen, Z., Li W., 2020. The Ongoing Epidemic of 2019 Novel Coronavirus (SARS-CoV-2): Infection and Fatality Trends in Wuhan, Hubei and Across China. Bmj. 69(13), 382.
Tang B., Bragazzi N.L., Li Q., Tang S., Xiao Y.,Wu J., 2020. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious Dsease Modelling. 35(11), 248-55.
Schneider D.S,. Ayres J.S., 2008. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 8(11), 889-95.
To K.K.W., Tsang O.T.Y., Leung W.S., Tam A.R., Wu T.C., Lung D.C., Yip C.C.Y., Cai J.P., Chan J.M.C., Chik T.S.H., Lau D.P.L., 2020. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infec Dis. 20(5), 565-74.
He X., Lau E.H., Wu P., Deng X., Wang J., Hao X., Lau Y.C., Wong J.Y., Guan Y., Tan X., Mo, X., 2020. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat med. 26(5), 672-5.
Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia, J., Guo Q., 2020. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 382(12), 1177-9.
Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C., Hoelscher M., 2020. Virological assessment of hospitalized patients with COVID-2019. Nature. 581(7809), 465-9.
Smallwood H.S., Duan S., Morfouace M., Rezinciuc S., Shulkin B.L., Shelat A., 2017. Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep. 19(8), 1640-53.
12.Ayres J.S., 2020. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2(7), 572-85.
Chow N., Fleming-Dutra K., Gierke R., 2020. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–March 28, 2020. MMWR Morb Mortal Wkly Rep. 69(13), 382.
14.Reese H., Iuliano A.D., Patel N.N., Garg S., Kim L., Silk B.J., 2021. Estimated incidence of coronavirus disease 2019 (COVID-19) illness and hospitalization—United States, February–September 2020. Clinical Infectious Diseases.72(12), e1010-e7.
Yanai H., 2020. Metabolic syndrome and COVID-19. Cardiology Research.11(6):360.
Yudong P., Kai M., Hongquan G., 2020. Clinical characteristics and outcomes of 112 patients with cardiovascular disease infected with novel coronavirus pneumonia. Zhonghua Xin Xue Guan Bing Za Zhi. 48(6), 450-455.
Formica S., González-García C., Senoussi M., Brass M., 2021. Neural oscillations track the maintenance and proceduralization of novel instructions. NeuroImage. 232(11), 7870.
Lewandowski K., Lewandowski M., 2011. Intensive care in the obese. Best practice & research Clinical anaesthesiology. 25(1), 95-108.
Suratt P., Wilhoit S.C., Hsiao H.S., Atkinson R.L., and Rochester D.F., 1984. Compliance of chest wall in obese subjects. J Appl Physiol Respir Environ Exerc Physiol. 11(6), 360.
Rimensberger P.C., Pristine G., Mullen J.B.M., Cox P.N., Slutsky A.S., 1999. Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med. 27(9),1940-5.
Mead J., Takishima T., Leith D., 1970. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 18(3), 230.
Steele R.M., Finucane F.M., Griffin S.J., Wareham N.J., Ekelund U., 2009. Obesity is associated with altered lung function independently of physical activity and fitness. Obesity. 17(3), 578-84.
Finucane F.M, Davenport C., 2020. Coronavirus and Obesity: Could Insulin Resistance Mediate the Severity of COVID-19 Infection. Front Public Health. 12(8), 184
Cooper R., Huang L., Hardy R., Crainiceanu A., Harris T., Schrack J.A., 2017. Obesity history and daily patterns of physical activity at age 60–64 years: findings from the MRC National Survey of Health and Development. J Gerontol A Biol Sci Med Sci. 72(10), 1424-30.
Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., 2020. High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity. 28(10), 1994
Yang R.Z., Lee M.J., Hu H., Pollin T.I., Ryan A.S., Nicklas B.J., 2006. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med. 8(11), 889-95.
Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., 2020. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med [Internet]; 2020 [cited 2020 Mar 21]. Online ahead of print. 1;180(7), 1031
Yang X., Yu Y., Xu J., Shu H., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., 2020. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 8(5), 475-481
She J., Liu L., Liu W., 2020. COVID‐19 epidemic: disease characteristics in children. Journal of Medical Virology. 92(7), 747-54.
Petersen M.C., Shulman G.I., 2018. Mechanisms of insulin action and insulin resistance. Physiol Rev. 98(4), 2133-223.
Kahn S., 2003. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 46(1), 3-19.
Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan, Y., Yang P., Zhang Y., Deng W., Bao, L., 2005. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Mmed. 11(8), 875-9.
Hamming I., Timens W., Bulthuis M., Lely A.T., Navis G.J., van. Goor H., 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203(2), 631-7.
Dominici F.P., Burghi V., Munoz M.C., Giani J.F., 2014. Modulation of the action of insulin by angiotensin-(1–7). Clin Sci(lond). 126(9), 613-30.
Underwood P.C., Adler G.K., 2013. The renin angiotensin aldosterone system and insulin resistance in humans. Curr Hypertens Rep. 15(1), 59-70.
Henriksen E.J., Prasannarong M., 2013. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Mol Cell Endocrinol. 378(1-2),15-22.
Chhabra K.H., Chodavarapu H, Lazartigues E., 2013 Angiotensin converting enzyme 2: a new important player in the regulation of glycemia. IUBMB life. 65(9), 731-8.
Coelho M.S., Lopes K.L., de Aquino Freitas R., de Oliveira-Sales E.B., Bergasmaschi C.T., Campos R.R., 2010. High sucrose intake in rats is associated with increased ACE2 and angiotensin-(1–7) levels in the adipose tissue. Regul pept. 162(1-3), 61-7.
Zhang W., Xu Y.Z., Liu B., Wu R., Yang Y.Y., Xiao X.Q., 2014. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. Scientific World Journal. 90(11), 1226.
Riera M., Márquez E., Clotet S., Gimeno J., Roca-Ho H., Lloreta J., Juanpere N., Batlle D., Pascual J., Soler, M.J., 2014. Effect of insulin on ACE2 activity and kidney function in the non-obese diabetic mouse. PLOS ONE. 11(8),875-9.
Roca Ho.H., Riera M., Palau V., Pascual J., Soler M.J., 2017. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 18(3), 563.
Rao S., Lau A., So H.C., 2020. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A Mendelian Randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care. 43(7), 1416-1426.
Muniyappa R., Gubbi S., 2020. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab. 23(6), 623-8.
Sumner A.E., Bagheri M.H., 2020. Identifying the waist circumference of risk in people of African descent. Nat Rev Endocrinol. 16(1), 1-3.
Kulcsar K.A., Coleman C.M., Beck S.E., Frieman M.B., 2019. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight. 33(5), 429-55.
Yang J., Feng Y., Yuan M., Yuan S., Fu H., Wu B., 2006. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 23(6), 623-8.
López-Jaramillo P., Gómez A.D., López-López J., López-López C., Martínez-Ortega J., Gómez-Rodríguez A., Triana-Cubillos S., 2014. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig. 18(1), 37-45.
Finucane F.M., Luan J., Wareham N.J., Sharp S.J., O’rahilly S., Balkau B., Flyvbjerg A., Walker M., Højlund K., Nolan J., Savage J., 2009. Correlation of the leptin: adiponectin ratio with measures of insulin resistance in non-diabetic individuals. Diabetologia. 52(11), 2345-9.
Friedman J., Halaas J.L., 1998. Leptin and the regulation of body weight in mammals. Nature. 28(10), 1994
Considine R.V., Sinha M.K., Heiman M.L., Kriauciunas A., Stephens T.W., Nyce M.R., 1996. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 334(5), 292-5.
Turer A., Scherer P., 2012. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 55(9), 2319-26.
Korytkowski M., Antinori-Lent K., Drincic A., Hirsch I.B., McDonnell M.E., Rushakoff R., 2020. A Pragmatic Approach to Inpatient Diabetes Management during the COVID-19 Pandemic. J Clin Endocrinol Metab. 105(9), 3076-87.
Wu Z., McGoogan J.M., 2020. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 323(13), 1239-42.
Bagam P., Singh D.P., Inda M.E., Batra S., 2017. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol. 33(5), 429-55.
Taube S., Jiang M., Wobus C.E., 2010. Glycosphingolipids as receptors for non-enveloped viruses. Viruses. 2(4), 1011-49.
Nagy P.D., Strating J.R., van Kuppeveld F.J., 2016. Building viral replication organelles: close encounters of the membrane types. PLoS pathog. 12(10), e1005912.
Diamond D.L, Syder A.J, Jacobs J.M, Sorensen C.M, Walters K.A., Proll S.C., 2010. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog. 6(1), e1000719.
Ono A., Ablan S.D., Lockett S.J., Nagashima K., Freed E.O., 2004. Phosphatidylinositol (4, 5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U.S.A. 101(41), 14889-94.
Zhang J., Pekosz A., Lamb R.A., 2000. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol. 74(10), 4634-44.
Xu K., Nagy P.D., 2015. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc Natl Acad Sci U.S.A. 112(14), E1782-E91.
Knoops K., Kikkert M., Van Den Worm S.H, Zevenhoven-Dobbe J.C, Van Der Meer Y., Koster A.J, 2008. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 6(9), e226.
Marsh M., Helenius A., 2006. Virus entry: open sesame. Cell. 124(4), 729-40.
Mercer J., Helenius A., 2009. Virus entry by macropinocytosis. Nat Cell Biol. 11(5), 510-20.
Mazzon M., Marsh M., 2019. Targeting viral entry as a strategy for broad-spectrum antivirals Viruses. 11(2), 176.
Bornstein S.R, Dalan R., Hopkins D., Mingrone G., Boehm BO., 2020. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 16(6), 297-8.
Mehta P., Mcauley D., Brown M., Sanchez E., Tattersall R., Manson J., 2020. Correspondence COVID-19: consider cytokine storm syndromes and. Lancet. 6736(20),19-20.
Chan J., 2005. Recovery pathway of post-SARS patients. Thorax. 60(5), 361-2.
Lin Y.F., Lin S.L., Huang T.M., Yang S.Y., Lai T.S., Chen L., 2018. New-onset diabetes after acute kidney injury requiring dialysis. Diabetes Care. 41(10), 2105-10.
Sasannejad C., Ely E.W., Lahiri S., 2019. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 23(1), 352.
Huang M., Parker A.M., Bienvenu O.J., Dinglas V.D., Colantuoni E., Hopkins R.O., 2016. Psychiatric symptoms in acute respiratory distress syndrome survivors: a one-year national multi-center study. Crit Care Med. 44(5), 954.
Yang J.K., Lin S.S., Ji X.J., Guo L.M., 2010. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 47(3),193-9.
Chan K.S., Mourtzakis M., Friedman L.A., Dinglas V.D., Hough C.L., Ely E.W., 2018. Evaluating muscle mass in survivors of ARDS: a 1-year multi-center longitudinal study. Crit Care Med. 46(8), 1238.
Rocheteau P., Chatre L., Briand D., Mebarki M., Jouvion G., Bardon J., 2015. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat Commun. 15(6),10145.
Pfoh E.R., Wozniak A.W., Colantuoni E., Dinglas V.D., Mendez-Tellez P.A., Shanholtz C., 2016. Physical declines occurring after hospital discharge in ARDS survivors: a 5-year longitudinal study. Intensive Care Med. 42(10),1557-66.
Jin M., Tong Q., 2020. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 26(7), 10.3201.
Haley M.J., White C.S., Roberts D., O’Toole K., Cunningham C.J., Rivers-Auty J., 2019. Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice. Transl Stroke Res. 11(4), 837-850.
Hall G., Laddu D.R., Phillips S.A., Lavie C.J., Arena R., 2020. A tale of two pandemics: How will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog Cardiovasc Dis. 33(5), 429-55.
Heffernan K.S., Jae S.Y., 2020. Exercise as medicine for COVID-19: an ACE in the hole? Med Hypotheses. 33(5), 429-55.
Abassi Z.A., Skorecki K., Heyman S.N., Kinaneh S., Armaly Z., 2020. COVID-19 infection and mortality: a physiologist’s perspective enlightening clinical features and plausible interventional strategies. Am J Physiol Lung Cell Mol Physiol. 318(5), L1020-L2.
80. Rey-Parra G.J., Vadivel A., Coltan L., Hall A., Eaton F., Schuster M., Loibner H., Penninger J.M., Kassiri Z., Oudit G.Y., Thébaud B., 2012. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury. J Mol Med. 90(6), 637-47.
81.Zhang P., Zhu L., Cai J., Lei F., Qin J.J., Xie J., 2020. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circulation research. Cric Res. 5;126(12),1671-1681.
Gurwitz D., 2020. Angiotensin receptor blockers as tentative SARS CoV 2 therapeutics. Drug Deve Res. 81(5), 537-540.
Martin S.A., Pence B.D., Woods J.A., 2009. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev. 37(4),157-64.
Harris M.D., 2011. Infectious disease in athletes. Curr Sports Med Rep. 10(2), 84-9.
Ahmadinejad Z., Alijani N., Mansori S., Ziaee V., 2014. Common sports-related infections: a review on clinical pictures, management and time to return to sports. Asian J Sports Med. 5(1),1-9.
Chen P., Mao L., Nassis G.P., Harmer P., Ainsworth B.E., Li F., 2020. Wuhan coronavirus (2019-nCoV): The need to maintain regular physical activity while taking precautions. J Sport Health Sci. 9(2), 103-104.
Munoz J., 2020. COVID-19 Epidemic Exercise or Not to Exercise; That is the Question. Asian J Sports Med. 11(1), e102630.
Eichner E.R., 1993. Infection, immunity, and exercise: What to tell patients?. Phys Sportsmed. 21(1),125-35.