Response of MIR-1 and HSP-60 Gene Expression to Endurance Training in Heart Tissue of Rats
Subject Areas :
Journal of Chemical Health Risks
Maryam Nasiri
1
,
Asieh Abbassi Daloii
2
*
,
Alireza Barari
3
,
Ayoub Saeidi
4
1 - Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2 - Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
3 - Department of Exercise Physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
4 - Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
Received: 2020-06-14
Accepted : 2022-06-28
Published : 2023-09-01
Keywords:
Exercise,
Rats,
Heart tissue,
MIR-1,
HSP60,
Abstract :
MicroRNAs and heat shock proteins are important factors in heart function. However, the response of these factors to exercise in the heart tissue is unclear. Here, we evaluated the impact of endurance training on the expression of MIR-1 and HSP-60 genes in heart tissue of rats. In this study, 10 male Wistar rats were randomly divided into 2 groups control and endurance training. The aerobic exercise program included running on the treadmill at speed of 25 m min-1, 5 days a week for 12 weeks. After anesthesia, we performed an autopsy to collect the heart. The expression level of MIR-1 and HSP60 were measured by Real-Time PCR. An Independent t-test was used to determine significant changes (P<0.05). After the intervention period, the expression level of the MIR-1 gene showed a significant decrease in the aerobic exercise group thank in the control group (P=0.001). However, aerobic training had no significant effect on the expression level of HSP60 in the heart (P<0.05). It seems that twelve weeks of moderate-intensity aerobic exercise can probably improve heart function.
References:
Virani S.S., Benjamin E.J., Callaway C.W., Chang A.R., Cheng S., Chiuve S.E., 2018. Heart Disease and Stroke Statistics 2018 At-a-Glance. American Heart Association.
Hajar R. 2017. Risk Factors for Coronary Artery Disease: Historical Perspectives Heart Views. 18(3), 109–114.
Heidenreich P.A., Trogdon J.G., Khavjou O.A., Butler J., Dracup K., Ezekowitz M.D., 2011. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 123, 933–44.
Chen Y., Rollins J., Paigen B., Wang X., 2007. Genetic and genomic insights into the molecular basis of atherosclerosis. Cell Metab. 6, 164–79.
Ruan Y., Guo Y., Zheng Y., Huang Z., Sun S., Kowal P., ShiY., Wu F.2018. Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: results from SAGE Wave 1. BMC Public Health. 18(1), 778-89.
Zhou S.S., Jin J.P., Wang J.Q., Zhang Z.G., Freedman J.H., Zheng Y., Cai L., 2018. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 39(7), 1073-1084.
Ulaganathan K., James A., Ananthapur V., Nalla P., 2013. miRNA regulation during cardiac development and remodeling in cardiomyopathy. EXCLI J. 12, 980–92.
van Rooij E.N., Olson L.E.N., 2008. MicroRNAs flex their muscles. Trends in Genetics. 24(4), 159-166.
Yin C., Salloum F.N., Kukreja R.C. 2009. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research. 104(5), 572-5.
Kim S.C., Stice J.P., Chen L., Jung J.S., Gupta S., Wang Y., Baumgarten G., Trial J., Knowlton A.A., 2009. Extracellular heat shock protein 60, cardiac myocytes and apoptosis. Circ Res. 105, 1186–1195
Li Y., Si R., Feng Y., Chen H.H., Zou L., Wang E., Zhang M., Warren H.S., Sosnovik D.E., Chao W., 2011. Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. J Biol Chem. 286, 31308–31319.
Pinckard K., Baskin Kedryn K., Kristin I. 2019. Stanford Effects of Exercise to Improve Cardiovascular Health Front Cardiovasc Med. 6, 69-78.
Zheng G., Qiu P., Xia R., Lin H., Ye B., Tao J., Chen L., 2019. Effect of Aerobic Exercise on Inflammatory Markers in Healthy Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials Front Aging Neurosci. 11, 98-108.
Myers J., Kokkinos P., Nyelin E., 2019. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients. 11(7), 1652-68.
Ramos A.E., Lo C., Estephan L.E., Tai Y.Y., Tang Y., Zhao J., Sugahara M., Gorcsan J., Brown M.G., Lieberman D.E., Chan S.Y., Baggish A.L., 2018. Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. Am J Physiol Heart Circ Physiol. 315(2), 273-283.
Silveira A.C., Fernandes T., Úrsula P.R.S., Gomes J.L.P., Mota D.G.F., Negrão C.E., Oliveira E.M., 2017. Exercise Training Restores Cardiac MicroRNA-1 and MicroRNA-29c to Nonpathological Levels in Obese Rats. Oxidative Medicine and Cellular Longevity. 1-12.
Fathi M., Gharakhanlou R., Rajabi H., 2016. The Effect of 14 Week of Endurance Activity on miR-1 Expression of Left Ventricle in Male Wistar Rats. Sport Biosciences. 8(1), 65-75. [In Persian].
Khadir A., Kavalakatt S., Cherian P., Warsame S., Abubaker J.A., Dehbi M., Tiss A., 2018. Physical Exercise Enhanced Heat Shock Protein 60 Expression and Attenuated Inflammation in the Adipose Tissue of Human Diabetic Obese. Front Endocrinol (Lausanne). 9, 16-28.
Jokar M., Motamedi P., Nabiuni M., Rajabi H., Khaledi N., 2017. The effect of aerobic exercise with melatonin consumption on the expression of HSP60 and HSP70 markers in rat myocard after ischemic-reperfusion. Knowledge & Health. 12(1), 73-83.
Khabazian B.M.G., Safarzadeh-Golpordesari A.R., Ebrahimi M., Rahbarizadeh F., Abednazari H., 2009. Endurance training enhances ABCA1 expression in rat small intestine. European Jornal of Applied Physiology. 107, 351-8.
Soci U.P.R., Fernandes T., Hashimoto N.Y., Mota G.F., Amadeu M.A., Rosa K.T., 2011. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological Genomics. 43(11), 665-73.
Klein J., Mellett L., 2015. High-intensity interval training: Rehab considerations for health and cardiovascular risk. CSM. 4(5), 1-11.
Ikeda S., He A., Won Kong S., Lu J., Bejar R., Bodyak N., Lee K.H., Ma Q., Kang P.M., GolubT.R., William T.P. 2009. MicroRNA-1 Negatively Regulates Expression of the Hypertrophy-Associated Calmodulin and Mef2a Genes Mol Cell Biol. 29(8), 2193–2204.
Sayed D., Hong C., Chen IY., Lypowy J., Abdellatif M., 2007. MicroRNAs play an essential role in the development of cardiachypertrophy. Circ Res. 100(3), 416-24.
Ikeda S., Kong S.W., Lu J., Bisping E., Zhang H., Allen P.D. 2007. Altered microRNA expression in human heart disease. Physiological genomics. 31(3), 367-73.
Han M., Toli J., Abdellatif M., 2011. MicroRNAs in the cardiovascular system. Current opinion in cardiology. 26(3), 181-9.
Hill J.A., Olson E.N., 2008. Cardiac plasticity. New England Journal of Medicine. 358(13), 1370-80.
Kardyńska M., Paszek A., Spiller D., Śmieja J., Widłak W., White Michael R.H., Paszek P., Kimmel M., 2018. Quantitative analysis reveals crosstalk mechanisms of heat shock-induced attenuation of NF-κB signaling at the single cell level PloS Comput Biol. 14(4), e1006130.
Ruell P., Thompson M., Hoffman K., 2009. Heat shock proteins as an aid inthe treatment and diagnosis of heat stroke. Journal of Thermal Biology. 34(1), 1-7.
Yin C., Salloum F.N., Kukreja R.C., 2009. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research. 104(5), 572-5.
Marzetti E., Privitera G., Simili V., Wohlgemuth S.E., Aulisa L., Pahor M., Leeuwenburgh C., 2010. Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. The Scientific World Journal. 10, 340-9.
He B., Xiao J., Ren A.J., Zhang Y.F., Zhang H., Chen M, Xie B, Gao X.G., Wang Y.W., 2011. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. Journal of Biomedical Science. 18(1), 1-10.