صرفهجویی در مصرف انرژی شبکه های حسگر بی سیم با استفاده از پروتکل مسیریابی مبتنی بر خوشه بندی مسطح و الگوریتم های تکاملی
محورهای موضوعی : مهندسی الکترونیکمسعود نگهداری 1 , مرضیه دادور 2
1 - دانشگاه آزاد اسلامی، واحد بوشهر؛ گروه مهندسی کامپیوتر، بوشهر، ایران
2 - مربی، دانشگاه آزاد اسلامی، واحد بوشهر؛ گروه مهندسی کامپیوتر، بوشهر، ایران
کلید واژه: evolutionary algorithms, Wireless Sensor Networks, طول عمر شبکه, Network lifetime, شبکههای حسگر بیسیم, Routing Protocol, الگوریتمهای تکاملی, خوشهبندی مسطح, پروتکل مسیریابی, Flat clustering,
چکیده مقاله :
شبکه های حسگر بی سیم دارای تعداد زیادی گره های حسگر با انرژی محدود می باشند که در یک منطقه محدود پراکنده شده اند. بیشتر انرژی گره ها برای ارسال اطلاعات به ایستگاه مرکزی مصرف می شود. با توجه به محدودیت انرژی در این نوع شبکه ها، افزایش طول عمر با کاهش مصرف انرژی همواره مورد توجه بوده است. در این تحقیق، یک الگوریتم خوشه بندی سطحی مبتنی بر ژنتیک در راستای افزایش طول عمر این نوع شبکه ها ارائه شده است. در خوشه بندی سطحی پیشنهادی، ناحیه جغرافیایی با توجه به برد رادیویی به سه سطح تقسیم شده و خوشه بندی گره های هر سطح به صورت جداگانه انجام می شود. سرخوشه ها انرژی بیشتری نسبت به دیگر گره ها برای ارسال اطلاعات مصرف می کنند، لذا هدف الگوریتم پیشنهادی کاهش تعداد سرخوشه ها در جهت افزایش طول عمر شبکه است. در نهایت با تغییر سرخوشه ها در هر دور مسیریابی، توازن مصرف انرژی بیشتری بین گره ها به وجود می آید. نتایج حاصل شده از آزمایشات، حاکی از برتری الگوریتم پیشنهادی در ارسال پیام و طول عمر شبکه نسبت به سایر پروتکل های مشابه می باشد.
Wireless sensor networks have a large number of limited-energy sensor nodes dispersed in a finite area. Most node energies are used to send data to the central station. Due to the energy constraints in this type of grid, increasing life expectancy has always been a concern with decreasing energy consumption. The aim of this study is to provide surface clustering based on genetic algorithm in order to increase the life span of these networks. In proposed surface clustering, the geographic area is divided into three levels according to the radio range and the clustering of the nodes of each level is done individually. The cluster heads use more energy than other nodes to send information, so the proposed algorithm aims to reduce the number of cluster heads in order to increase the network lifetime. Finally, by changing the clusters in each routing round, there is a greater energy balance between the nodes. The results from the experiments indicate the superiority of the proposed algorithm in transmitting messages and network lifetimes over other similar protocols.
(1) Yu, Y., Li, K., Zhou, W., & Li, P. (2012). Trust mechanisms in wireless sensor networks: Attack analysis and countermeasures. Journal of Network and Computer Applications, 35(3), 867-880.
(2) Dogan, G., & Brown, T. (2014). A Survey of Provenance Leveraged Trust in Wireless Sensor Networks. Computer Engineering and Intelligent Systems, 5(2), 1-11.
(3) Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer networks, 38(4), 393-422.
(4) Bao, F., Chen, R., Chang, M., & Cho, J. H. (2012). Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection. Network and Service Management, IEEE Transactions on, 9(2), 169-183.
(5) Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000, August). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 56-67). ACM.
(6) Gastpar, M., & Vetterli, M. (2003). Source-channel communication in sensor networks. In Information Processing in Sensor Networks (pp. 162-177). Springer Berlin Heidelberg.
(7) Clausen, T., & Jacquet, P. (2003). Optimized Link State with genetic Routing Protocol (OLSR). IETF, RFC 3626.
(8) Chiang, C. (1997). Routing in Clustered Multihop, Mobile Wireless Networks with Fading Channel. Proc. IEEE SICON’97, pp.197-211.
(9) Nehra, N. K., Kumar, M., & Patel, R. B. (2009, December). Neural network based energy efficient clustering and routing in wireless sensor networks. In Networks and Communications, 2009. NETCOM'09. First International Conference on (pp. 34-39). IEEE.
(10) Minhas, M. R., Gopalakrishnan, S., & Leung, V. C. (2008, November). Fuzzy algorithms for maximum lifetime routing in wireless sensor networks. In Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1-6). IEEE.
(11) Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on mobile computing, 3(4), 366-379.
(12) Moh’d Alia, O. (2017). Dynamic relocation of mobile base station in wireless sensor networks using a cluster-based harmony search algorithm. Information Sciences, 385, 76-95.
(13) Yao, G. S., Dong, Z. X., Wen, W. M., & Ren, Q. (2016). A routing optimization strategy for wireless sensor networks based on improved genetic algorithm. 淡江理工學刊, 19(2), 221-228.
(14) Dasarathan, D., & Kumar, P. N. (2016). Quality of Service Based Improved Dynamic Source Routing in MANETs. Indian Journal of Applied Research, 5(8).
(15) Bouyer, A., Hatamlou, A., & Masdari, M. (2015). A new approach for decreasing energy in wireless sensor networks with hybrid LEACH protocol and fuzzy C-means algorithm. International Journal of Communication Networks and Distributed Systems, 14(4), 400-412.
(16) Barzegari, S., & Masdari, M. (2016). A Novel Fuzzy CMeans-Based Clustering Scheme for Wireless Sensor Networks. International Journal of Grid and Distributed Computing, 9(2), 193-202.
(17) Kaushik, A. K. (2016). A hybrid approach of fuzzy c-means clustering and neural network to make energy-efficient heterogeneous wireless sensor network. International Journal of Electrical and Computer Engineering, 6(2), 674.
(18) Khan, M. Y., Javaid, N., Khan, M. A., Javaid, A., Khan, Z. A., & Qasim, U. (2013). Hybrid DEEC: Towards efficient energy utilization in wireless sensor networks. arXiv preprint arXiv:1303.4679.
(19) Qing, L., Zhu, Q. X., & Wang, M. W. (2006). A distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Journal of Software, 17(3), 481-489.
(20) Mohamed-Lamine, M. (2013, May). New clustering scheme for wireless sensor networks. In Systems, Signal Processing and their Applications (WoSSPA), 2013 8th International Workshop on (pp. 487-491). IEEE.
(21) Ducrocq, T., Mitton, N., & Hauspie, M. (2013, April). Energy-based clustering for wireless sensor network lifetime optimization. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE (pp. 968-973). IEEE.
(22) معیری, حمیدرضا؛ 1396، کاهش مصرف انرژی در شبکههای حسگر بیسیم با استفاده از خوشهبندی FCM، پایاننامه کارشناسی ارشد، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات بوشهر.
(23) احمدی نیا, محمد؛ محمدرضا میبدی و مهدی اثنی عشری، ۱۳۸۸، روشی کارا جهت تجمیع داده ها در شبکه های حسگربی سیم با استفاده از آتوماتاهای یادگیر، پانزدهمین کنفرانس بین المللی سالانه انجمن کامپیوتر ایران، تهران، انجمن کامپیوتر، مرکز توسعه فناوری نیرو.
(24) Rappaport, T. S. (1996). Wireless communications: principles and practice (Vol. 2). New Jersey: prentice hall PTR.
(25) Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. Boston University Computer Science Department.
(26) Naranjo, P. G. V., Shojafar, M., Mostafaei, H., Pooranian, Z., & Baccarelli, E. (2017). P-SEP: a prolong stable election routing algorithm for energy-limited heterogeneous fog-supported wireless sensor networks. The Journal of Supercomputing, 73(2), 733-755.
(27) Malluh, A. A., Elleithy, K. M., Qawaqneh, Z., Mstafa, R. J., & Alanazi, A. (2014, April). Em-sep: an efficient modified stable election protocol. In American Society for Engineering Education (ASEE Zone 1), 2014 Zone 1 Conference of the (pp. 1-7). IEEE.
(28) Singh, D., & Panda, C. K. (2015, January). Performance analysis of modified stable election protocol in heterogeneous wsn. In 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO).
_||_