مدیریت نیروگاههای ذخیره انرژی بزرگ: بهینهسازی شارژ و دشارژ با الگوریتم جستجوی فاخته
محورهای موضوعی : مهندسی قدرتبهنام مطلبی نژاد 1 , مجید حسینا 2 , مجتبی واحدی 3 , محمود سمیعی مقدم 4
1 - گروه مهندسی برق، واحد علی آباد کتول، دانشگاه آزاد اسلامی ، علی آباد کتول، ایران
2 - گروه علوم مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران
3 - گروه مهندسی برق، واحد شاهرود، دانشگاه آزاد اسلامی ، شاهرود ، ایران
4 - گروه مهندسی برق، واحد دامغان،دانشگاه آزاد اسلامی، دامغان، ایران
کلید واژه: الگوریتم تکاملی, بهینهسازی, پست فوق توزیع, نیروگاههای بزرگ ذخیره انرژی,
چکیده مقاله :
در حال حاضر، با رشد روزافزون جامعه و نیازهای افزایشی به انرژی، استفاده از منابع انرژی تمیز و قابل انعطاف برای تامین نیازهای اجتماعی امری ضروری و حیاتی شده است. . با توجه به پیشرفتهای فناوری، امروزه امکان ارتقاء نیروگاههای ذخیره انرژی به مقیاس بزرگ وجود دارد. معماری و فناوری مدرن این نیروگاهها امکان استفاده بهینه از منابع تجدیدپذیر انرژی را تسهیل کرده و در نتیجه، هزینههای انرژی را به شکل چشمگیری کاهش داده و بهرهوری انرژی را افزایش میدهند. همچنین، با استفاده از الگوریتمهای هوش مصنوعی و بهینهسازی، میتوان عملکرد و عملیات نیروگاههای ذخیره انرژی را بهبود بخشید. در این مقاله، به بررسی مدیریت نیروگاههای ذخیره انرژی بزرگ پرداخته میشود. این مقاله اقدامات نوآورانهای در مدیریت این نیروگاهها ارائه میدهد، که شامل محدودیتهایی برای تعداد فرآیندهای شارژ و دشارژ در نظر گرفته شده است. به علاوه، الگوریتم جستجوی فاخته به عنوان یک روش قوی و کارآمد در حل مدل پیشنهادی مورد استفاده قرار میگیرد. این الگوریتم توانایی پیدا کردن جوابهای بهینه سراسری را دارد و میتواند در بهبود کارایی و افزایش سودآوری نیروگاههای ذخیره انرژی بزرگ تأثیرگذار باشد. نتایج شبیهسازی نشان میدهد که بهرهبری از این رویکرد در مدیریت نیروگاههای ذخیره انرژی مقیاس بزرگ تأثیرات اقتصادی قابل توجهی را به همراه دارد. این تأثیرات شامل کاهش هزینههای انرژی، افزایش بهرهوری، استقلال بیشتر از منابع سوخت فسیلی، حفظ پایداری شبکه برق و بهبود عملکرد سیستم انتقال برق میشود.
They are directly integrated into smart distribution networks and can supply stored energy during peak demand periods, while absorbing and storing energy during periods of low demand. This capability helps maintain a balance between supply and demand in power grids, preventing voltage fluctuations and the inability to meet peak loads during high-demand hours. Thanks to technological advancements, it is now possible to upgrade large-scale energy storage facilities. The modern architecture and technology of these facilities facilitate the efficient utilization of renewable energy sources, significantly reducing energy costs and increasing energy efficiency. Additionally, through the use of artificial intelligence algorithms and optimization techniques, the performance and operations of large-scale energy storage facilities can be enhanced. This article focuses on the management of large-scale energy storage facilities, introducing innovative measures that include constraints on the number of charge and discharge processes. Furthermore, the use of the advanced Fakete search algorithm is employed as a powerful and efficient method for solving the proposed model. This algorithm has the capability to find global optimal solutions and can significantly improve the efficiency and profitability of large-scale energy storage facilities. Simulation results demonstrate that adopting this approach in managing large-scale energy storage facilities leads to significant economic impacts. These impacts include reduced energy costs, increased efficiency, greater independence from fossil fuel resources, the preservation of grid stability, and improved performance of the power transmission system.
[1] B. N. Silva, M. Khan and K. Han, "Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities," Sustainable Cities and Society, vol. 38, pp. 697-713, 2018, doi: 10.1016/j.scs.2018.01.053.
[2] F. C. Robert, G. S. Sisodia and S. Gopalan, "A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids," Sustainable cities and society, vol. 40, pp. 735-745, 2018, doi: 10.1016/j.scs.2018.04.008.
[3] M. Motalleb, P. Siano and R. Ghorbani, "Networked stackelberg competition in a demand response market," Applied energy, vol. 239, pp. 680-691, 2019, doi: 10.1016/j.apenergy.2019.01.174.
[4] F. Keck, M. Lenzen, A. Vassallo and M. Li, "The impact of battery energy storage for renewable energy power grids in Australia," Energy, vol. 173, pp. 647-657, 2019, doi: 10.1016/j.energy.2019.02.053.
[5] S.-Y. Lee, I.-B. Lee and J. Han, "Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference," Applied Energy, vol. 238, pp. 34-44, 2019, doi: 10.1016/j.apenergy.2019.01.058.
[6] X. Wen, Y. Yu, Z. Xu, J. Zhao and J. Li, "Optimal distributed energy storage investment scheme for distribution network accommodating high renewable penetration," International Transactions on Electrical Energy Systems, p. e12002, 2019, doi: 10.1002/2050-7038.12002.
[7] J. F. Carneiro, C. R. Matos and S. Van GESPel, "Opportunities for large-scale energy storage in geological formations in mainland Portugal," Renewable and Sustainable Energy Reviews, vol. 99, pp. 201-211, 2019, doi: 10.1016/j.rser.2018.09.036.
[8] M. Sedghi, A. Ahmadian and M. Aliakbar-Golkar, "Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 304-316, 2016, doi: 10.1109/TPWRS.2015.2404533.
[9] Y. Zheng et al., "Optimal operation of battery energy storage system considering distribution system uncertainty," IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1051-1060, 2018, doi: 10.1109/TSTE.2017.2762364.
[10] M. Katsanevakis, R. A. Stewart and L. Junwei, "A novel voltage stability and quality index demonstrated on a low voltage distribution network with multifunctional energy storage systems," Electric Power Systems Research, vol. 171, pp. 264-282, 2019, doi: 10.1016/j.epsr.2019.01.043.
[11] B. Guo, M. Niu, X. Lai and L. Chen, "Application research on large-scale battery energy storage system under Global Energy Interconnection framework," Global Energy Interconnection, vol. 1, no. 1, pp. 79-86, 2018, doi: 10.14171/j.2096-5117.gei.2018.01.010.
[12] V. Mehra, R. Amatya and R. J. Ram, "Estimating the value of demand-side management in low-cost, solar micro-grids," Energy, vol. 163, pp. 74-87, 2018, doi: 10.1016/j.energy.2018.07.204.
[13] M. Daghi, M. Sedghi, A. Ahmadian and M. Aliakbar-Golkar, "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied energy, vol. 183, pp. 456-469, 2016. doi.org/10.1016/j.apenergy.2016.08.190
[14] H. Xing, H. Cheng, Y. Zhang and P. Zeng, "Active distribution network expansion planning integrating dispersed energy storage systems," IET Generation, Transmission & Distribution, vol. 10, no. 3, pp. 638-644, 2016, doi: 10.1049/iet-gtd.2015.0411.
[15] A. Azizivahed et al., "Energy Management Strategy in Dynamic Distribution Network Reconfiguration considering Renewable Energy Resources and Storage," IEEE Transactions on Sustainable Energy, 2019, doi: 10.1109/TSTE.2019.2901429.
[16] Y. Gao, Q. Ai, M. Yousif and X. Wang, "Source-load-storage consistency collaborative optimization control of flexible DC distribution network considering multi-energy complementarity," International Journal of Electrical Power & Energy Systems, vol. 107, pp. 273-281, 2019, doi: 10.1016/j.ijepes.2018.11.033.
[17] X. Zhang and A. J. Conejo, "Coordinated investment in transmission and storage systems representing long-and short-term uncertainty," IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7143-7151, 2018, doi: 10.1109/TPWRS.2018.2842045.
[18] M. Motalleb and R. Ghorbani, "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, vol. 202, pp. 581-596, 2017, doi: 10.1016/j.apenergy.2017.05.186.
[19] A. Ahmadian, M. Sedghi, H. Fgaier, B. Mohammadi-ivatloo, M. A. Golkar and A. Elkamel, "PEVs Data Mining Based on Factor Analysis Method for Energy Storage and DG Planning in Active Distribution Network: Introducing S2S Effect," Energy, 2019, doi: 10.1016/j.energy.2019.03.097.
[20] N. Yan, B. Zhang, W. Li and S. Ma, "Hybrid Energy Storage Capacity Allocation Method for Active Distribution Network Considering Demand Side Response," IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1-4, 2019, doi: 10.1109/TASC.2018.2889860.
[21] L. A. Wong, V. K. Ramachandaramurthy, P. Taylor, J. Ekanayake, S. L. Walker and S. Padmanaban, "Review on the optimal placement, sizing and control of an energy storage system in the distribution network," Journal of Energy Storage, vol. 21, pp. 489-504, 2019, doi: 10.1016/j.est.2018.12.015.
[22] J. Li, Z. Xu, J. Zhao, S. Chai, Y. Yu and X. Xu, "Model Predictive Control Based Ramp Minimization in Active Distribution Network Using Energy Storage Systems," Electric Power Components and Systems, pp. 1-11, 2019, doi: 10.1080/15325008.2019.1577929.
[23] L. Bai, T. Jiang, F. Li, H. Chen and X. Li, "Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability," Applied Energy, vol. 210, pp. 1082-1091, 2018, doi: 10.1016/j.apenergy.2017.07.004.
[24] J. Lizana, D. Friedrich, R. Renaldi and R. Chacartegui, "Energy flexible building through smart demand-side management and latent heat storage," Applied energy, vol. 230, pp. 471-485, 2018, doi: 10.1016/j.apenergy.2018.08.065.
[25] N. L. Rajakovic and V. M. Shiljkut, "Long-term forecasting of annual peak load considering effects of demand-side programs," Journal of Modern Power Systems and Clean Energy, vol. 6, no. 1, pp. 145-157, 2018, doi: 10.1007/s40565-017-0328-6.
[26] T. M. Gür, "Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage," Energy & Environmental Science, vol. 11, no. 10, pp. 2696-2767, 2018, doi: 10.1039/C8EE01419A.
[27] N. Jayasekara, M. A. Masoum and P. J. Wolfs, "Optimal operation of distributed energy storage systems to improve distribution network load and generation hosting capability," IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 250-261, 2016, doi: 10.1109/TSTE.2015.2487360.
[28] K. Bangash, M. Farrag and A. Osman, "Investigation of Energy Storage Batteries in Stability Enforcement of Low Inertia Active Distribution Network," Technology and Economics of Smart Grids and Sustainable Energy, vol. 4, no. 1, p. 1, 2019, doi: 10.1007/s40866-018-0059-4.
[29] G. Shaoyun, X. Zhengyang, L. Hong, L. Mengyi, Y. Zan and Z. Chenghao, "Coordinated Voltage Control for Active Distribution Network Considering the Impact of Energy Storage," Energy Procedia, vol. 158, pp. 1122-1127, 2019, doi: 10.1016/j.egypro.2019.01.277.
[30] F. A. Chacra, P. Bastard, G. Fleury and R. Clavreul, "Impact of energy storage costs on economical performance in a distribution substation," IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 684-691, 2005, doi: 10.1109/TPWRS.2005.846091.
[31] X. Li and S. Wang, "Energy management and operational control methods for grid battery energy storage systems," in CSEE Journal of Power and Energy Systems, vol. 7, no. 5, pp. 1026-1040, Sept. 2021, doi: 10.17775/CSEEJPES.2019.00160.
[32] I. Alcaide-Godinez, F. Bai, T. K. Saha and R. Memisevic, "Contingency Reserve Evaluation for Fast Frequency Response of Multiple Battery Energy Storage Systems in a Large-scale Power Grid," in CSEE Journal of Power and Energy Systems, vol. 9, no. 3, pp. 873-883, May 2023, doi: 10.17775/CSEEJPES.2022.01050.
[33] N. Pang, Q. Meng and M. Nan, "Multi-Criteria Evaluation and Selection of Renewable Energy Battery Energy Storage System-A Case Study of Tibet, China," in IEEE Access, vol. 9, pp. 119857-119870, 2021, doi: 10.1109/ACCESS.2021.3107192.
[34] C. O. Pereira, R. Torquato, W. Freitas and H. Ding, "Wide-Scale Assessment of the Payback of a Battery Energy Storage System Connected to MV Customers," in IEEE Transactions on Sustainable Energy, vol. 14, no. 3, pp. 1909-1912, July 2023, doi: 10.1109/TSTE.2023.3235213.
[35] S. Li, C. Ye, Y. Ding, Y. Song and M. Bao, "Reliability Assessment of Renewable Power Systems Considering Thermally-Induced Incidents of Large-Scale Battery Energy Storage," in IEEE Transactions on Power Systems, vol. 38, no. 4, pp. 3924-3938, July 2023, doi: 10.1109/TPWRS.2022.3200952.
[36] E. Azarkish and M. Esmaelbeag, “Using Genetic Optimization Algorithm in Coordination of Capacitor Banks, Transformer Tap Changers and Storage Devices in the Presence of Solar Systems,” Journal of Southern Communication Engineering, vol. 11, no. 42, pp. 77-95, 2021 (in persian).
[37] M. Parham and S. Mortazavi, “Optimization of random scheduling combining wind farm and storage pumps in the electricity market,” Journal of Southern Communication Engineering, vol. 9, no. 34, 2019 (in persian).
[38] S. Naseri, M. Esmaelbeag and M. Najafi, “Economic Dispatch Problem for Minimizing Cost and Improving Reliability Consifering Uncertainty,” Journal of Southern Communication Engineering, vol. 11, no. 41, pp. 77-91, 2021 (in persian).
[39] M. khadem and M. Esmaelbeag, “Optimize the Number, Locating, and Sizing of D-STATCOM and DGs Using GA Algorithm,” Journal of Southern Communication Engineering, vol. 11, no. 42, pp. 29-42, 2021 (in persian).
[40] M. Karami, T. Niknam and H. Mohammadi Kamerva, “Optimal placement of distributed generation sources in radial distribution network with the aim of reducing losses and improving voltage profiles using genetic algorithm,” Journal of Southern Communication Engineering, vol. 9, no. 34, 2020 (in persian).