به دام انداختن ذرات پلی¬استایرن با استفاده از انبرک پلاسمونیکی
محورهای موضوعی : مهندسی الکترونیکابراهیم فولادی 1 , مجتبی صادقی 2 * , زهرا عادل پور 3 , فرهاد بهادری جهرمی 4
1 - دانشجوی دکتری/دکتری مهندسی برق، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد فسا، ایران
2 - گروه مهندسی برق،واحد شیراز،دانشگاه آزاد اسلامی،شیراز،ایران
3 - گروه مهندسی برق،واحد شیراز،دانشگاه آزاد اسلامی،شیراز،ایران
4 - گروه مهندسی برق،واحد فسا،دانشگاه آزاد اسلامی،فسا،ایران
کلید واژه: فیبر نوری, دو هسته¬ای, پلاسمونیک, انبرک, به دام اندازی.,
چکیده مقاله :
این تحقیق به تحلیل و بررسی استفاده از انبرکهای پلاسمونیکی در زمینه بیوتکنولوژی با تمرکز بر روی یک انبرک فیبرنوری دو¬ هستهای پلاسمونیک متمایل می¬پردازد. این انبرک با استفاده از نرمافزار کامسول طراحی و مدلسازی شده و توسط شبیهسازیهای عددی، ظرفیت خود در به داماندازی ذرات پلیاستایرن در مقیاس نانو را به معرض نمایش می¬گذارد. نتایج به دست آمده از تحقیق نشان میدهد که تغییرات در پارامترهای مختلف هم¬چون طول موج مورد استفاده، شعاع ذره به دام افتاده، و ضریب شکست محیط مورد استفاده، به تغییر در نیروی به دام انداز منجر میشود. افزایش ضریب شکست محیط و ابعاد ذرات باعث افزایش چشمگیر در نیروی اعمالی میگردد، بهویژه در طول موجهای کوتاه این مسئله نمایانتر است. این یافتهها نشان میدهد که ساختار پلاسمونیکی پیشنهادی دارای نیروی به دامانداز بسیار بالاست و این امر قابلیت ارتقاء محسوسی نسبت به تحقیقات قبلی را داراست. این پیشرفتها در زمینه بیوتکنولوژی نه تنها امکان دستکاری دقیق¬تر و اثربخشتر ذرات در مقیاس نانو را ایجاد مینمایند، بلکه ایجاد فناوریهای نوین در حوزه پزشکی و دیگر علوم زیستی را تسهیل میدهند. این پیشرفتها به طور مستقیم و غیر مستقیم به بهبود سیستمهای تشخیصی و درمانی نیز کمک خواهند کرد.
This research analyzes and examines the use of plasmonic tweezers in the field of biotechnology, focusing on an inclined twine-core plasmonic optical fiber tweezer. This tweezer was designed and modeled using COMSOL software and through numerical simulations, it exhibits its capacity to trap polystyrene particles on a nano-scale. The results obtained from the research show that changes in different parameters such as the wavelength used, the radius of the trapped particle, and the refractive index of the medium used, lead to changes in the trapping force. The increase in the refractive index of the environment and the dimensions of the particles causes a significant increase in the applied force, especially in short wavelengths, the problem is more visible. These findings show that the proposed plasmonic structure has a very high trapping force, and this has the ability to significantly improve compared to previous researches. These advances in the field of biotechnology not only allow for more accurate and effective manipulation of nanoscale particles, but also facilitate the creation of new technologies in the field of medicine and other biological sciences. These developments will directly and indirectly help to improve diagnostic and treatment systems.
[1] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” ChemInform, vol. 34, no. 16, Apr. 2003, doi: https://doi.org/10.1002/chin.200316243.
[2] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, Dec. 1972, doi: https://doi.org/10.1103/physrevb.6.4370.
[3] P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1578–1586, Dec. 2008, doi: https://doi.org/10.1021/ar7002804.
[4] S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition,” The Journal of Physical Chemistry B, vol. 103, no. 18, pp. 3529–3533, May 1999, doi: https://doi.org/10.1021/jp990387w.
[5] I. Freestone, N. Meeks, M. Sax, and C. Higgitt, “The Lycurgus Cup — A Roman nanotechnology,” Gold Bulletin, vol. 40, no. 4, pp. 270–277, Dec. 2007, doi: https://doi.org/10.1007/bf03215599.
[6] Yun Seon Do, Jung Ho Park, Bo Yeon Hwang, Sung Min Lee, Byeong Kwon Ju, and Kyung Cheol Choi, “Plasmonic Color Filter and its Fabrication for Large‐Area Applications,” Advanced optical materials, vol. 1, no. 2, pp. 133–138, Feb. 2013, doi: https://doi.org/10.1002/adom.201200021.
[7] S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Letters, vol. 12, no. 8, pp. 4349–4354, Jul. 2012, doi: https://doi.org/10.1021/nl302110z.
[8] K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annual Review of Physical Chemistry, vol. 58, no. 1, pp. 267–297, May 2007, doi: https://doi.org/10.1146/annurev.physchem.58.032806.104607.
[9] E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Advanced Materials, vol. 16, no. 19, pp. 1685–1706, Oct. 2004, doi: https://doi.org/10.1002/adma.200400271.
[10] A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Physical Review Letters, vol. 24, no. 4, pp. 156–159, Jan. 1970, doi: https://doi.org/10.1103/physrevlett.24.156.
[11] A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769–771, Dec. 1987, doi: https://doi.org/10.1038/330769a0.
[12] A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, Mar. 1987, doi: https://doi.org/10.1126/science.3547653.
[13] S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules,” Science, vol. 271, no. 5250, pp. 795–799, Feb. 1996, doi: https://doi.org/10.1126/science.271.5250.795.
[14] T. T. Perkins, “Optical traps for single molecule biophysics: a primer,” Laser & Photonics Review, vol. 3, no. 1–2, pp. 203–220, Feb. 2009, doi: https://doi.org/10.1002/lpor.200810014.
[15] Veneranda Garcés-Chávez, Romain Quidant, P. J. Reece, Gonçal Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” vol. 73, no. 8, Feb. 2006, doi: https://doi.org/10.1103/physrevb.73.085417.
[16] M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Physics, vol. 3, no. 7, pp. 477–480, May 2007, doi: https://doi.org/10.1038/nphys624.
[17] M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface Plasmon Optical Tweezers: Tunable Optical Manipulation in the Femtonewton Range,” Physical Review Letters, vol. 100, no. 18, May 2008, doi: https://doi.org/10.1103/physrevlett.100.186804.
[18] M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics, vol. 5, no. 6, pp. 349–356, May 2011, doi: https://doi.org/10.1038/nphoton.2011.56.
[19] M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical Trapping of Rayleigh Particles and Escherichia coli Bacteria with Resonant Optical Antennas,” Nano Letters, vol. 9, no. 10, pp. 3387–3391, Jan. 2009, doi: https://doi.org/10.1021/nl803677x.
[20] L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Optics Express, vol. 17, no. 8, pp. 6018–6018, Mar. 2009, doi: https://doi.org/10.1364/oe.17.006018.
[21] K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of Gold Nanoparticles with Surface Plasmon Polaritons: Evidence of Enhanced Optical Force from Near-Field Coupling between Gold Particle and Gold Film,” Nano Letters, vol. 9, no. 7, pp. 2623–2629, Jun. 2009, doi: https://doi.org/10.1021/nl900944y.
[22] Y. Pang and R. Gordon, “Optical Trapping of 12 nm Dielectric Spheres Using Double-Nanoholes in a Gold Film,” Nano Letters, vol. 11, no. 9, pp. 3763–3767, Aug. 2011, doi: https://doi.org/10.1021/nl201807z.
[23] Y. Pang and R. Gordon, “Optical Trapping of a Single Protein,” Nano Letters, vol. 12, no. 1, pp. 402–406, Dec. 2011, doi: https://doi.org/10.1021/nl203719v.
[24] A. Kotnala, D. DePaoli, and R. Gordon, “Sensing nanoparticles using a double nanohole optical trap,” Lab on a Chip, vol. 13, no. 20, p. 4142, 2013, doi: https://doi.org/10.1039/c3lc50772f.
[25] A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. Rennehan, A. A. Al-Balushiand R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping”, vol. 13, no. 13, Jun. 2013, doi: 10.1039/C3LC00003F.
[26] A. A. Al, A. Zehtabi-Oskuie, and R. Gordon, “Observing single protein binding by optical transmission through a double nanohole aperture in a metal film,” Biomedical Optics Express, vol. 4, no. 9, pp. 1504–1504, Aug. 2013, doi: https://doi.org/10.1364/boe.4.001504.
[27] A. Kotnala and R. Gordon, “Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer,” Nano Letters, vol. 14, no. 2, pp. 853–856, Jan. 2014, doi: https://doi.org/10.1021/nl404233z.
[28] S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nature Photonics, vol. 9, no. 1, pp. 68–72, Nov. 2014, doi: https://doi.org/10.1038/nphoton.2014.283.
[29] R. Regmi, A. A. Al Balushi, H. Rigneault, R. Gordon, and J. Wenger, “Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture,” Scientific Reports, vol. 5, no. 1, Oct. 2015, doi: https://doi.org/10.1038/srep15852.
[30] S. Jones, A. A. Al, and R. Gordon, “Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system,” Journal of optics, vol. 17, no. 10, pp. 102001–102001, Sep. 2015, doi: https://doi.org/10.1088/2040-8978/17/10/102001.
[31] H. Xu, S. Jones, B.-C. Choi, and R. Gordon, “Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers,” Nano letters, vol. 16, no. 4, pp. 2639–2643, Mar. 2016, doi: https://doi.org/10.1021/acs.nanolett.6b00288.
[32] U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves),” Journal of the Optical Society of America, vol. 31, no. 3, p. 213, Mar. 1941, doi: https://doi.org/10.1364/josa.31.000213.