کاربرد حلالهای با آبدوستی قابلتغییر برای اندازهگیری هیدروکربنهای آروماتیک چندحلقهای با روش میکرواستخراج مایع-مایع همگن جفتشده با سوانگاری گازی-طیفسنجی جرمی
محورهای موضوعی : شیمی تجزیهمژگان صالحی 1 , حمید احمر 2 , کبرا سادات هاشمی نسب 3
1 - کارشناس ارشد شیمی تجزیه، گروه شیمی، دانشکده علوم پایه، دانشگاه زابل، زابل، ایران
2 - استادیار شیمی تجزیه، گروه شیمی، دانشکده علوم پایه، دانشگاه زابل، زابل، ایران
3 - استادیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران
کلید واژه: میکرواستخراج مایع-مایع همگن, حلال با آبدوستی قابلتغییر, N-N-دیپروپیلآمین, هیدروکربنهای آروماتیک چندحلقهای,
چکیده مقاله :
بهتازگی، گروه جدیدی از ترکیبات، یعنی حلالهای با آبدوستی قابلتغییر، در زمینه میکرواستخراج معرفیشدهاند. در این مطالعه، یک روش میکرو استخراج مایع-مایع همگن برپایه حلالهای با آبدوستی قابلتغییر و تشخیص با دستگاه سوانگاری گازی–طیفسنجی جرمی برای پیشتغلیظ و تعیین مقدار هیدروکربنهای آروماتیک چندحلقهای (PAHs)، در نمونههای آب معرفیشده است. روش استخراجی شامل دو مرحله است. در مرحله نخست، حلال (N-N-دیپروپیلآمین) غیرقابل امتزاج در آب با هیدروکلریک اسید بهعنوان واکنشگر در فاز آّبی حل میشود. پس از آن، جداسازی فازهای آلی و آبی با افزودن سدیم هیدروکسید انجام میشود. تأثیر عاملهای تجربی بر استخراج مانند دما، زمان، حجم فاز پذیرنده،pH فاز دهنده و قدرت یونی محلول مورد بررسی قرار گرفت. در شرایط مطلوب، ارتباط خطی خوب در گستره 2 تا 1000µgl-1 برای آنتراسن و پایرن و 4 تا 1000µgl-1 برای نفتالن و حد تشخیص برابر با 0/6µgl-1 برای آنتراسن و پایرن و برابر با 1/21µgl-1 برای نفتالن بهدست آمد. تکرارپذیری روش بهصورت انحراف استاندارد نسبی (RSD) در گستره 3/8 تا 4/6 % تعیین شد. درنهایت، کاربرد روش پیشنهادی در آزمون ترکیبات هدف در نمونههای آبی متفاوت بررسی شد که نتایج رضایتبخش بود.
[1] López-López, J.A.; Ogalla-Chozas, E.; Lara-Martín, P.A.; Pintado-Herrera, M.G.; Science of the Total Environment 598, 58-63, 2017.
[2] Adekunle, A.S.; Oyekunle, J.A.O.; Ola, I.J.; Obisesan, O.R.; Maxakato, N.W.; Toxicology reports 5, 994-1001, 2018.
[3] Abdel-Shafy, H.I.; Mansour, M.S.; Egyptian Journal of Petroleum 25(1), 107-123, 2016.
[4] Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A.; Environmental management 60(4), 758-783, 2017.
[5] Avino, P.; Notardonato, I.; Perugini, L.; Russo, M.V.; Microchemical Journal 133, 251-257, 2017.
[6] Zhou, S.; Forbes, M.W.; Abbatt, J.P.D.; Analytical Chemistry 87(9), 4733-4740, 2015.
[7] Carrizo, D.; Domeño, C.; Nerín, I.; Alfaro, P.; Nerín, C.; Talanta 131, 175-184, 2015.
[8] Jjunju, F.P.M. ; Maher, S.; Li, A.; Badu-Tawiah, K.A.; Taylor, S.; Cooks, R.G.; Journal of the American Society for Mass Spectrometry 26(2), 271-280, 2015.
[9] Benigni, P.; DeBord, J.D.; Thompson, C.J.; Gardinali, P.; Fernandez-Lima, F.; Energy & Fuels 30(1), 196-203, 2016.
[10] Salem, F.B.; Ben Said, O.; Duran, R.; Monperrus, M.; Bulletin of environmental contamination and toxicology, 96(5), 678-684, 2016.
[11] ISO 28540, Water quality - Determination of 16 polycyclic aromatic hydrocarbons (PAH) in water - Method using gas chromatography with mass spectrometric detection (GC-MS), Technical Committee: ISO/TC 147/SC 2 (Physical, chemical and biochemical methods), International Organization for Standardization, 2011.
[12] Shi, Y., Wang, C.; Guo, X.; Du, J.; Du, L.; Food Chemistry 199, 75-80, 2016.
[13] Amiri, A.; Baghayeri, M.; Kashmari, M.; Microchimica Acta 183(1), 149-156, 2016.
[14] Mollahosseini, A.; Rokue, M.; Mojtahedi, M.M.; Toghroli, M.; Kamankesh, M.; Motaharian, A.; Microchemical Journal 126, 431-437, 2016.
[15] Yamamoto, Y.; Ishizaki, A.; Kataoka, H.; Journal of Chromatography B 1000, 187-191, 2015.
[16] Kamankesh, M.; Mohammadi, A.; Hosseini, H.; Modarres Tehrani, Z.; Meat Science 103, 61-67, 2015.
[17] Trujillo-Rodríguez, M.J.; Nacham, O.; Clark, K.D.; Verónica, P.; Anderson, J.L.; Ayala, J.H.; Afonso, A.M.; Analytica Chimica Acta 934, 106-113, 2016.
[18] Clavijo, S.; Fernández, M.; Forteza, R.; Brunetto, M.D.R.; Cerdà, V.; Analytical Methods 6, 3335-3344, 2014.
[19] Zhu, J.; Wang, Q.; Li, M.; Ren, L.; Zheng B.; Zou, X.; Analytical Methods 9, 1855-1863, 2017.
[20] Wang, X.; Nie, J.; Yu, G.; Wang, P.; Li, Z.; Lee, M.; Analytical Methods 10, 5105-5111, 2018.
[21] Sha, O.; Zhu, X.; Feng Y.; Ma, W.; Food Chemistry 174, 380-386, 2015.
[22] Fernández, P.; González, C.; Pena, M.T.; Carro, A.M.; Lorenzo, R.A.; Analytica Chimica Acta 767, 88-96, 2013.
[23] Melwanki, M.B.; Chen, W.S.; Bai, H.Y.; Lin, T.Y.; Fuh, M.R.; Talanta 78(2), 618-62, 2009.
[24] Hosseininejad, M.S.; Faraji, H.; Jamshidi, A.; Water Science and Technology 79, 93-103, 2018.
[25] Daneshfar, A.; Khezeli, T.; Environmental Toxicology and Chemistry 33, 2694-2701, 2014.
[26] Yazdanfar, N.; Shamsipur, M.; Ghambarian, M.; Esrafili, A.; Chromatographia 81, 487-499, 2018.
[27] Tavakoli, L.; Yamini, Y.; Ebrahimzadeh, H.; Shariati, S.; Journal of Chromatography A 1196–1197, 133–138, 2008.
[28] Rameshgar, J.; Hasheminasab, K.S.; Adlnasab, L.; Ahmar, H.; Journal of separation science 40(15), 3114-3119, 2017.
[29] Shahvandi, S.K.; Banitaba, M.H.; Ahmar, H.; Talanta 184, 103-108, 2018.
[30] Veyseh, S.; Niazi, A.; Talanta 147, 117-123, 2016.
[31] Vanderveen, J.R.; Durelle, J.; Jessop, P.G.; Green Chemistry 16, 1187-1197, 2014.
[32] Yazdanfar, N.; Yamini, Y.; Ghambarian, M.; Chromatographia 77, 329-336, 2014.
[33] Shariati-Feizabadi, S.; Yamini, Y.; Bahramifar, N.; Analytica Chimica Acta 489(1), 21-31, 2003.
[34] Hou, L.; Lee, H.K.; Journal of Chromatography A 976, 377–385, 2002.
[35] Khalili Zanjani, M.R.; Yamini, Y.; Shariati, S.; Jönsson, J.Å.; Analytica Chimica Acta 585, 286–293, 2007.
[36] Haji Hosseini, M.; Rezaee, M.; Akbarian, S.; Mizani, F.; Pourjavid, M.R.; Arabieh, M.; Analytica chimica acta 762, 54-60, 2013.
[37] Yang, Y.; Qin, P.; Zhang, J.; Li, W.; Zhu, J.; Lu, M.; Cai, Z.; Journal of Chromatography A 1570, 47-55, 2018.
[38] Mohammadi, A.; Malek-Mohammadi Jahani, S.; Kamankesh, M.; Jazaeri, S.; Eivani, M.; Esmaeili, S.; Abdi, S.; Polycyclic Aromatic Compounds 620, 185-220, 2018.