Determination of Doxorubicin in Urine Samples using Syringe to Syringe Dispersive Liquid-Phase Microextraction through Fluorescence Spectrometry
Subject Areas : PolymerOzra Alimohammadi 1 , Majid Ramezani 2 , Mohammad Alimoradi 3
1 - Department of Chemistry, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran.
2 - Department of Chemistry, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran.
3 - Department of Chemistry, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran.
Keywords:
Abstract :
In this research, to identify the trace amount of doxorubicin, a syringe-to-syringe dispersive liquidphase microextraction (SS-DLPME) procedure combined with fluorescence spectrometry was applied. The syringe-to-syringe process was used to speed up the formation of the acceptable cloudy solution by a low volume of extraction solvent, which reduced the equilibrium time and increased the extraction efficiency. To optimize the parameters affecting the procedure, pH, type and volume of extraction solvent, the effect of salt, the number of injections, and the centrifuge speed were investigated. Under optimal conditions, the linear range of doxorubicin was found to be3.0-300.0 ng mL-1. The limit of detection, the limit of quantification, inter-day, and intra-day precision (RSD%) were 0.76, 2.55 ng mL-1, 0.82-2.11% and 1.20- 2.37%, respectively. The proposed method was successfully applied for pre-concentration and determination of the doxorubicin in urine samples.
[1]. S. Shah, A. Chandra, A. Kaur, N. Sabnis, A. Lacko, Z. Gryczynski, R. Fudala, I. Gryczynski, J.
Photochem. Photobiol. B., 170, 65 (2017).
[2]. M. Ahmadi, T. Madrakian, A. Afkhami, New J. Chem., 39, 163 (2015).
[3]. E. Tasca, A. Del Giudice, L. Galantini, K. Schillén, A.M. Giuliani, M. Giustini, J. Colloid
Interface Sci., 540, 593 (2019).
[4]. O. Vajdle, J. Zbiljić, B. Tasić, D. Jović, V. Guzsvány, A. Djordjevic, Electrochim. Acta, 132, 49
(2014).
[5]. Z. Xu, P. Deng, J. Li, L. Xu, S. Tang, Mater. Sci. Eng. B., 218, 31 (2017).
[6]. S. Jafari, S. Hamidi, J. Liq. Chromatogr. Relat. Technol., 41, 401 (2018).
[7]. Y. He, H.K. Lee, Anal. Chem., 69, 4634 (1997).
[8]. Y. Wang, Y.C. Kwok, Y. He, H.K. Lee, Anal. Chem., 70, 4610 (1998).
[9]. M. Rezaee, Y. Assadi, M.-R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A.,
1116, 1 (2006).
[10]. X. Wang, T. Du, J. Wang, H. Kou, X. Du, Microchem. J., 148, 85 (2019).
[11]. L. Wang, T. Huang, H. Cao, Q. Yuan, Z. Liang, L. Guo-Xi, Food Anal. Methods, 9, 2223
(2016).
[12]. M. Asadi, S. Dadfarnia, A.M.H. Shabani, Anal. Chim. Acta, 932, 22 (2016).
[13]. A.L. Sanson, S.C.R. Silva, M.C.G. Martins, A. Giusti-Paiva, P.P. Maia, I. Martins, Braz. J.
Pharm., 47, 363 (2011).
[14]. D.M. Souza, J.F. Reichert, A.F. Martins, Chemosphere, 201, 178 (2018).
[15]. L.B. Liao, H.Y. Zhou, X.M. Xiao, J. Mol. Struct., 749, 108 (2005).
[16]. H. Tavallali, A. Jahanbekam, Int J Pharm Tech Res., 2, 1943 (2010).
[17]. J. Han, J. Zhang, H. Zhao, Y. Li, Z. Chen, J. Pharm. Anal., 6, 199 (2016).
[18]. Q. Yan, W. Priebe, J.B. Chaires, R.S. Czernuszewicz, Biospectroscopy, 3, 307 (1997).
[19]. T. Madrakian, K.D. Asl, M. Ahmadi, A. Afkhami, RSC Advances, 6, 72803 (2016).
[20]. J. Soleymani, M. Hasanzadeh, N. Shadjou, M.K. Jafari, J.V. Gharamaleki, M. Yadollahi, A.
Jouyban, Mater. Sci. Eng. C., 61, 638 (2016).
[21]. J. Lurie, Handbook of Analytical Chemistry, Mir Publishers(1975).
[22]. T. Gezahegn, B. Tegegne, F. Zewge, B.S. Chandravanshi, BMC Chem., 13, 28 (2019).
[23]. O. Alimohammadi, M. Ramezani, R. Noorossana, M. Alimoradi, J. Iran. Chem. Soc., 17, 167
(2020).
[24]. X.-H. Zang, Q.-H. Wu, M.-Y. Zhang, G.-H. Xi, Z. Wang, Chin J Anal Chem., 37, 161 (2009).
[25]. K. Mross, P. Maessen, W. Van Der Vijgh, H. Gall, E. Boven, H. Pinedo, J. Clin. Oncol., 6, 517
(1988).
[26]. M. Arvand, A. Masouleh, J. Iran. Chem. Soc., 14, 1673 (2017).
[27]. C. Sottani, G. Tranfo, M. Bettinelli, P. Faranda, M. Spagnoli, C. Minoia, Rapid Commun. Mass
Spectrom., 18, 2426 (2004).