Preparation and Characterization of Magnetic Gelatin-Polyvinyl Alcohol Hydrogel for using in the Release of Furosemide Drug
Subject Areas : PolymerBenyamin Masoumi 1 , Masoud Mokhtary 2
1 - Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords:
Abstract :
The magnetic gelatin-polyvinylalcohol hydrogel was prepared using K2S2O8 in aqueous media inthe presence of N,N′-methylenebisacrylamide, and Fe3O4 nanoparticles. The magnetic gelatinpolyvinylalcohol (Fe3O4/PVA-gelatin) hydrogel was characterized by FT-IR, SEM, and EDX. Also,magnetic characterization of the synthesized Fe3O4/PVA-gelatin hydrogel was specified by avibrating sample magnetometer (VSM). Then, the loading and release of the furosemide drug wereinvestigated using magnetic gelatin-polyvinylalcohol hydrogel. The FT-IR results confirmed theformation of gelatin-polyvinyl alcohol magnetic hydrogel. The effects of temperature and pH on theloading and release of furosemide drug in gelatin-polyvinylalcohol magnetic hydrogel were studied.The gelatin-PVA magnetic hydrogel is sensitive to pH and temperature and provides the controlledrelease of furosemide. The results showed that the highest loading of the drug was achieved at roomtemperature after 6 hours. Also, the highest drug release was observed after 4 hours at 40 °C in pH= 7.
[1]. D. Campoccia, P. Doherty, M. Radice, P. Brun, G. Abatangelo, D.F. Williams,
Biomaterials, 19, 2101 (1998).
[2]. G.D. Prestwich, D.M. Marecak, J.F. Marecak, K.P. Vercruysse, M. R. Ziebell, J. Controlled
Release, 53, 93 (1998).
[3]. M.M. Lakouraj, M. Tajbakhsh, M. Mokhtary, Iran. Polym. J., 14, 1022 (2005).
[4]. T.R. Hoare, D.S. Kohane, Polymer, 49, 1993 (2008).
[5]. H.K. Lau, K.L. Kiick, Biomacromolecules, , 16, 28 (2015).
[6]. K. Kabiri, H. Omidian, M.J. Zohuriaan-Mehr, S. Doroudiani, Polym. Compos.,32, 277
(2011).
[7]. K.B. Djagnya, Z. Wang, S. Xu, Crit. Rev. Food Sci. Nutr., 41, 481 (2010).
[8]. J.J.Moon, J.E. Saik, R.A. Poche, J.E. Leslie-Barbick, S.H. Lee, A.A. Smith, M.E.
Dickinson, J.L. West, Biomaterials, 31, 3840 (2010).
[9]. H., Chu, Y. Wang, Ther. Deliv., 3, 693 (2012).
[10]. H. Saini, A. Navaei, A., Van Putten, M. Nikkhah, Adv. Healthcare Mater., 4, 1961 (2015).
[11]. A. Navaei, D. Truong, J. Heffernan, J. Cutts, D. Brafman, R.W. Sirianni, B. Vernon, M.
Nikkhah, Acta Biomater., 32, 10 (2016).
[12]. N. Peela, F.S., Sam, W. Christenson, D. Truong, A.W. Watson, G. Mouneimne, R. Ros, M.
Nikkhah, Biomaterials, 81, 72 (2016).
[13]. A. Navaei, H. Saini, W. Christenson, R.T., Sullivan, R. Ros, M. Nikkhah, Acta Biomater.,
41, 133 (2016).
[14]. H. Aubin, J.W. Nichol, C.B. Hutson, H. Bae, A.L. Sieminski, D.M., Cropek, P. Akhyari, A.
Khademhosseini, Biomaterials, 31, 6941 (2010).
[15]. A. Navaei, N. Moore, R.T. Sullivan, D. Truong, R.Q. Migrino, M. Nikkhah, RSC Adv., 7,
3302 (2017).
[16]. J.W. Nichol, S. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini,
Biomaterials, 31, 5536 (2010).
[17]. M. Nikkhah, N. Eshak, P. Zorlutuna, N. Annabi, M. Castello, K. Kim, A. Dolatshahi-Pirouz,
F. Edalat, H. Bae, Y. Yang, A. Khademhosseini, Biomaterials., 33, 9009 (2012).
[18]. Y. Tabata, Y. Ikada, Biomaterials, 20, 2169 (1999).
[19]. A. Hosaka, H. Koyama, T. Kushibiki, Y. Tabata, N. Nishiyama, T. Miyata, H. Shigematsu,
T. Takato, H.Nagawa, Circulation, 110, 3322 (2004).
[20]. Z. Li, T. Qu, C. Ding, C. Ma, H. Sun, S. Li, X. Liu, Acta Biomaterialia, 13, 88 (2015).
[21]. Y. Liu, L. Sun, Y. Huan, H. Zhao, J. Deng, J. Surg. Res., 136, 85 (2006).
[22]. N. Takehara, Y. Tsutsumi, K. Tateishi, T. Ogata, H. Tanaka, T. Ueyama, T. Takahashi, T.
Takamatsu, M. Fukushima, M. Komeda, M. Yamagishi, H. Yaku, Y. Tabata, H. Matsubara, H. Oh,
J. Am. Coll. Cardiol., 52, 1858 (2008).
[23]. K. Nakajima, J. Fujita, M. Matsui, S. Tohyama, N.Tamura, H. Kanazawa, T. Seki, Y.
Kishino, A. Hirano, M. Okada, R. Tabei, M. Sano, S. Goto, Y.Tabata, K. Fukuda, PLoS One, , 10,
e0133308 (2015).
[24]. S.H. Lee, Y. Lee, Y.W. Chun, S.W. Crowder, P.P. Young, K.D. Park, H.J. Sung, Adv.
Funct. Mater., 24, 6771 (2014).
[25]. D. Loessner, C. Meinert, E. Kaemmerer, L.C. Martine, K. Yue, P.A. Levett, T.J. Klein,
F.P.W. Melchels, A. Khademhosseini, D.W. Hutmacher, Nat. Protoc., 11, 727 (2016).
[26]. T.C. Lai, J. Yu, W.B. Tsai, J. Mater. Chem. B, 4, 2304 (2016).
[27]. A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar, V.T.S. Rao, M. Nikkhah, S.R. Shin, D.
Krafft, M.R. Dokmeci, D. Shum-Tim, A. Khademhosseini, ACS Nano, 8, 8050 (2014).
[28]. S.F. Medeiros, A.M. Santos, H. Fessi, A. Elaissari, Int. J. Pharm., 403, 139 (2011).
[29]. T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, J. Magn. Magn.
Mater., 293, 483 (2005).
[30]. S. Laurent, J.L. Bridot, R.N. Muller, Future Med. Chem., 2, 427 (2010).
[31]. X. Zhao, J. Kim, C.A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, D.J. Mooney, Proc. Natl.
Acad. Sci. USA, 108, 67 (2011).
[32]. T. Weigel, R. Mohr, A. Lendlein, Smart Mater. Struct., 18, 025011 (2009).
[33]. R. Hernandez, J. Sacristan, L. Asin, T.E. Torres, M.R. Ibarra, G.F. Goya, C. Mijangos, J.
Phys. Chem. B, 114, 12002 (2010).
[34]. D.E. Meyer, B.C. Shin, G.A. Kong, M.W. Dewhirst, A. Chilkoti, J. Controlled Release., 74,
213 (2002).
[35]. M. Das, P. Senapati, Indian J. Pharm. Sci., 70, 77 (2008).
[36]. R. Bhagwat, I. Vaidhya, Int. J. Pharm. Sci. Res., 4, 970 (2013).
[37]. I. C. S. Bezerra, M. S. M. Moma, E. D. Freitas, M. G. C. Silva, M. G. A. Vieira, J. Chem.
Technol. Biotechnol., 96, 650 (2021).
[38]. L. Meka, B. Kesavan, V. N. Kalamata, C. Mohaneaga, S. Bandari, V. Vobalaboina, M. R.
Yamsani, J. Pharm. Sci., 98, 2122 (2009).
[39]. N.A. Peppas, J. Zach Hilt, A. Khademhosseini, R. Langer, Adv. Mater., 18, 1345 (2006).
[40]. B. Devarakonda, D. P. Otto, A. Judefeind, R. A. Hill, M.M. de Villiers, Int.J. Pharm., 345,
142, 2007.