Anti-corrosion and Anti-bacterial properties investigation of Graphene Oxide coating on AISI 304 stainless steel
Subject Areas : Polymer
1 - Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh
Ardabili, Namin, Iran
Keywords:
Abstract :
In this work, the corrosion resistance and antibacterial properties of Graphene Oxide were investigated. Hummer’s method was used for production of Graphene Oxide on AISI 304 stainless steel, and its formation was tested by Raman spectroscopy. Electrochemical Impedance spectroscopy (EIS) and Polarization tests in 3.5% NaCl solution were carried out for corrosion inhibition studies of the produced samples. Results of corrosion measurements revealed that coating of GrapheneOxide on stainless steel greatly improves its corrosion resistance. Surface morphology of the samples after corrosion tests was examined by scanning electron microscope analysis (SEM). The equivalent circuit of all samples was obtained, using the EIS data. Japanese Industry Standard test Methods was used for antibacterial properties investigation against gram negative E. coli bacteria. The results of antibacterial analysis showed that Graphene Oxide with anti-corrosion property, is promising material for antibacterial applications.
[1]. N. R. Baddoo, Journal of Constructional Steel Research, 64, 1199 (2008).
[2]. K.M. Perkins, M.R. Bache, Int. J. Fatigue, 22, 1499(2005).
[3]. S. E. Ziemniak, M. Hanson, Corros. Sci., 44, 2209 (2002).
[4]. H. Zhang, Y. L. Zhao, Z. D. Jiang, Mater. Lett., 59, 3370 (2005).
[5]. D. H. Mesa, A. Toro, A. Sinatora, A. P. Tschiptschin, Wear., 255, 139 (2003).
[6]. H. Savaloni, M. Habibi, Applied Surface Science., 258, 103 (2011).
[7]. C. Liu, G. Lin, D. Yang, M. Qi, Surf. Coat. Technol., 200, 4011 (2006).
[8]. V. H. V. Sarmento, M. G. Schiavetto, P. Hammer, A. V. Benedetti, C. S. Fugivara, P. H.
Suegama, S. H. Pulcinelli, C. V. Santilli, Surf. Coat. Technol., 204, 2689 (2010).
[9]. D. Pech, P. Steyer, J. P. Millet, Corros. Sci., 50, 1492 (2008).
[10]. A. R. Grayeli, H. Savaloni, Applied Surface Science., 258, 9982 (2012).
[11]. W. Haitao, Z. Qi, Y. Huashun, Z. Zhenya, C. Hongwei, M. Guanghui, steel, 15, 457 (2009).
[12]. K. Asami, K. Hashimoto, Corros. Sci., 45, 2263 (2003).
[13]. M. I.Katsnelson, I. V.Grigorieva, S. V.Dubonos, A. A. Firsov, Nature, 438, 197 (2005).
[14]. K. S.Novoselov, A. K.Geim, M S. V.orozov, D.Jiang, Y.Zhang, S. V.Dubonos, I.V.Grigorieva, A. A. Firsov, Science, 306, 666 ( 2004).
[15]. Y. B.Zhang, Y. W.Tan, H. L. Stormer, P.Kim, Nature, 438, 201 (2005).
[16]. X. K. Lu, M. F.Yu, H.Huang, R. S. Ruoff, Nanotechnology, 10, 269 (1999).
[17]. J. S.Bunch, S. S.Verbridge, J. S.Alden, A. M.van der Zande, J. M.Parpia, H. G.Craighead, P. L.
McEuen,.Nano Lett, 8, 2458 (2008).
[18]. S. Chen, L.Brown, M.Levendorf, W.Cai, S. Y. Ju, J.E. worth, X. Li, C. W. Magnuson, A.
Velamkanni, R. D. Piner, ACS Nano, 5, 1321 (2011).
[19]. P. Misaelides, A. Hatzidimitriou, F. Noli, A.D. Pogrebnjak, Y.N. Tyurin, S. Kosionidis,
Surf. Coat. Technol., 180, 290 (2004).
[20]. D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, ACS Nano, 6, 1102 (2012).
[21]. R.K.S. Raman, P.C. Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar,
L.Choudhary, R. Tkacz, P.M. Ajayan, M. Majumder, Carbon, 50, 4040 (2012).
[22]. N.T. Kirkland, T. Schiller, N. Medhekar, N. Birbilis, Corrosion Science, 56 ,1 (2012)
[23]. H. Yun, T. D. N. Phan, V. H. Pham, H. Kweon, J. S. Chung, B. Lee, E. W. Shin, Mater. Res.
Bull.,47, 2988 (2012).
[24]. S.C. Sahu, A.K. Samantara, M.Seth, S.Parwaiz, B. P. Singh, P.C. Rath, B.K.Jena,
Electrochemistry Communications, 32, 22 (2013).
[25]. S.J. R. Prabakar, Y.H. Hwang, E. G. Bae, D.K.Lee, Carbon, 52, 128 (2013).
[26]. S.A. Onaizi, S. S. J. Leong,Biotech. Advances, 29, 67(2011).
[27]. R. Dastjerdi, M. Montazer, Colloids and Surfaces B: Biointerfaces , 79, 5 (2010).
[28]. M.S .Usman, M.E. E.l. Zowalaty, K. Shameli, N. Zainuddin, M. Salama, and N. A. Ibrahim, Int
J Nanomedicine, 8, 4467 (2013).
[29]. M. M.Almoudi,A. S.Hussein,M. I.A. Hassan,, N.M. Zain,, The Saudi Dental Journal, 30, 4,
283 (2018).
[30]. Y. Xie, Y. He, P. L. Irwin, T. Jin, and X.Shi, Appl Environ Microbiol, 77, 2325 (2011).
[31]. N. Manjula, M. Suganya, D. Prabha, S. Balamurugan, J. Srivind, V. S. Nagarethinam, A. R.
Balu, Journal of Materials Science: Materials in Electronics, 28, 7615 (2017).
[32]. H. Kawakami, K. Yoshida, Y. Nishida, Y. Kikuchi and Y. Sato, ISIJ International, 48, 1299
(2008).
[33]. J.Yanab, L. Zhengb, K.Hu, L. Li,C. Li,L. Zhud, H. Wang,Y.Xiao,S. Wua,J. Liu,B.
Zhang,F.Zhange, European Polymer Journal, 110, 41 (2019)
[34]. A. M. Bonilla, M. F.García, Progress in Polymer Science, 37, 281(2012).
[35]. S. Pandey, International Journal of Scientific & Engineering Research, 8, 1697(2017)
[36]. P. Kumar, P.Huo, R. Zhang, and B. Liu, Nanomaterials, 9, 737 (2019).
[37]. W.C. Hou, P.L. Lee, Y.C. Chou and Y.S. Wang, Environ. Sci. Nano, 4, 647 (2017).
[38]. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff. Chem. Soc. Rev. 39, 228 (2010).
[39]. X. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu, W. Li, C. Fan, Q. Huang, Carbon,49, 986 (2011).
[40]. ON Ruiz, ACS Nano, 5, 8100 (2011)
[41]. S. Pei, H.M Cheng, Carbon, 50, 3210 (2012).
[42]. E. E. Stansbury, R. A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM, Ohio
(2000).
[43]. F.Abdi, H.Savaloni, Trans. Nonferrous Met. Soc. China, 27, 701(2017)
[44]. E. Poorqasemi, O. Abootalebi, M. Peikari, F. Haqdar, Corros. Sci., 51, 1043 (2009).
[45]. R. Kelly, J. R. Scully, D. Shoesmith, R. G. Buchheit, Electrochemical techniques in corrosion
science and engineering, Dekker, New York (2002).
[46]. A.Stich, S. Buhl, and C. Bulitta, Current Directions in Biomedical Engineering, 4, 229 (2018).