ارزیابی کاربرد هیومیک اسید بر شاخص¬های مورفوفیزیولوژیکی گیاه ذرت (Zea mays) تحت تنش شوری
محورهای موضوعی : مورفوفیزیولوژیکیابراهیم فانی 1 * , محمد علی جلال پوری 2
1 - گروه زیست شناسی، دانشکده علوم پایه، دانشگاه صنعتی خاتم الانبیاء (ص) بهبهان، خوزستان
2 - گروه کشاورزی، واحد بهبهان، دانشگاه آزاد اسلامی بهبهان، بهبهان، ایران
کلید واژه: آنتوسیانین, ارتفاع ساقه, , کلروفیل a, کلروفیل کل, قند محلول,
چکیده مقاله :
به منظور بررسی اثرات تنش شوری و کوددهی هیومیک اسید بر روی گیاه ذرت، مطالعهای بهصورت گلدانی در 3 تکرار با طرح آزمایشی فاکتوریل در قالب پایه کاملاً تصادفی به اجرا درآمد. تیمارها شامل تنش شوری در دو سطح (بدون تنش و تنش 100 میلیمولار) و کوددهی هیومیک اسید در سه سطح ( عدم کوددهی، کوددهی 100 میلیگرم در لیتر و کوددهی 200 میلیگرم در لیتر) بود. هدف از این مطالعه، بررسی اثرات کوددهی هیومیک اسید بر صفات مورفولوژیکی و فیزیولوژیکی گیاه ذرت در شرایط تنش شوری و ارزیابی نقش هیومیک اسید در بهبود صفات ذکر شده و کاهش اثرات مضر تنش شوری در گیاه ذرت به عنوان یک گیاه مهم از نظر تامین غذای انسان بود. نتایج نشان داد که تنش شوری در سطح معنی داری سبب کاهش میزان ارتفاع ساقه و کلروفیل کل در گیاه ذرت شد، درحالیکه تیمار هیومیک اسید در سطح معنیداری سبب کاهش اثرات مضر شوری برآنها شد. در شوری 100 میلیمولار، کاربرد کود 100 میلیگرم در لیتر هیومیک اسید در مقایسه با عدم کاربرد آن، ارتفاع ساقه را 26/6 درصد افزایش داد. همچنین در تنش شوری 100 میلیمولار، میزان کلروفیل کل در کوددهی 200 میلیگرم در لیتر هیومیک اسید نسبت به عدم کوددهی بیش از دو برابر افزایش نشان داد. بنابراین با توجه به نتایج این تحقیق میتوان مصرف هیومیک اسید را جهت بهبود رشد رویشی گیاه ذرت در شرایط تنش شوری توصیه کرد.
In order to investigate the effects of salinity stress and humic acid fertilization on corn plants, a pot study was carried out in 3 replications with a factorial experimental design in a completely random basis. The treatments included salinity stress at two levels (no stress and 100 mM stress) and humic acid fertilization at three levels (no fertilization, 100 mg/L fertilization and 200 mg/L fertilization). The purpose of this study was to investigate the effects of humic acid fertilization on the morphological and physiological traits of corn plants under salinity stress conditions and to evaluate the role of humic acid in improving the mentioned traits and reducing the harmful effects of salinity stress in corn plants as an important plant in supplying human food. The results showed that salinity stress significantly reduced the stem height and total chlorophyll in corn plants, while humic acid treatment significantly reduced the harmful effects of salinity. At 100 mM salinity, the application of 100 mg/L humic acid fertilizer increased the stem height by 6.26% compared to its non-application. Also, in the salinity stress of 100 mM, the amount of total chlorophyll in 200 mg/L humic acid fertilization increased more than twice compared to no fertilization. Therefore, according to the results of this research, it is possible to recommend the use of humic acid to improve the vegetative growth of corn plants under salt stress conditions.
Bohnert, H.J., Nelson, D.E., and Jensen, R.G. (1995). Adaptions to environmental stresses. Plant Cell, 7(7): 1099-1111
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356
Fani, E. (2024). The effects of feeding by silica fertilizer on the reduction of stress caused by salinity in fenugreek plants. Journal of Soil Management and Sustainable Production, 14 (1): 115- 129.(In Persian)
Gupta, B., and Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization.International Journal of Genomic, 18 pages.
Haghighi, B., Karimi., M., and Moradi, H. (2023). Investigating the effect of humic acid on the morphological and physiological characteristics of rosemary (Rosmarinus officinalis L.) under salt stress. Journal of Plant Process and Function, 12(57): 285- 298.
Hajihashemi, S., Jahantigh, O., and Fani, E. (2023). The effect of silicon treatment on improving the physiological response of radish (Raphanus sativus L.) to salinity stress. Plant Process and Function, 11(47): 21- 36. (In Persian)
Hasanpour, R., Neyshabouri, M., and Zarehaghi, D. (2015). Combined effect of soil salinity and compaction on some growth indices of corn. Water and Soil Science Journal, 25(1): 247-260. (in Persian with English abstract).
Hussain, K., Majeed, A., Nawaz, K., and Nisar, M.F. (2010). Changes in morphological attributes of maize (Zea mays L.) under NaCl salinity. American-Eurasian Journal of Agricultural and Environmental Sciences, 8(2): 230-232.
Ibrahimova, U., Kumar, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Zivcak, M., Arif, T., Hussain, S., Abdelhamid, M., Hajihashemi, Sh., Yang, X., and Brestic, M. (2021). Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology, 329:180- 191.
Khalilzadeh, R. (2017). Effects of plant growth promoting bacteria and cycocel growth regulator on yield and some physiological traits of wheat under salinity and water limitation condition. Thesis Ph. D. Facualty of Agriculture and Natural Resources. University of Mohaghegh Ardabili. Ardabil. Iran
Khoram Ghahfarokhi, A., Rahimi, A., Torabi, B., and Maddah Hosseini, Sh. (2015). Effect of humic acid application and foliar spraying of compost tea and vermiwash on nutrient absorption and chlorophyll content of safflower (Carthamus tinctorius L.). Journal of Oil Plants Production, 2(1): 71- 84.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. Elsevier, 350-382.
Liu, M., Wang, C., Wang, F., and Xie, Y. (2019). Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Applied Soil Ecology, 142(62): 147-154.
Murray J.R., and Hackett,W.P. (1991). Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiology, 97(1): 343–351.
Nardi, S., Pizzeghello, D., Muscolo, A., and Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34 (11): 1527-1536.
Narimani, R., Moghaddam, M., Ghasemi Pirbalouti, A, and Nemati, H. (2017). Effect of humic acid and ascorbate on growth and biochemical traits of Moldavian balm (Dracocephalum moldavica L.) under salinity stress. Plant Process and Function, 7(23): 297-313. (In Persian)
Narimani, R., Moghaddam, M., Nemati, S.H., and Ghasemi Pirbaluti, A. (2018). Evaluation of salinity adjusted by using humic acid and ascorbic acid in medicinal plant of moldavian balm (Dracocephalum moldavica L.). Plant Research Journal (Iranian Journal of Biology), 31(4): 955- 971.
Nematpour, A., Kazemeini, S., and Edalat, M. (2016). Effect of salinity on some growth and physiological characteristics of two cultivars of sweet corn (Zea mays var. saccharata). Plant Production Technology, 15(2): 153-165. (In Persian with English abstract).
Netondo, G.W., Onyango, J.C., and Beck, E. (2004). Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 44(3): 797- 805.
Parida, A.K., and Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60 (3): 324-349.
Pirasteh-Anosheh, H., Ranjbar, G., Pakniyat, H., and Emam, Y. (2016). Physiological Mechanisms of Salt Stress Tolerance in Plants; an Overview p. In: Azooz, M. M. and P. Ahmad (Eds.). Plant Environment Interaction: Responses and Approaches to Mitigate Stress. John Wiley and Sons, 141-160.
Poorakbar, L., and Maghsoumi Holasoo, S. (2015). Salinity effect on antioxidative enzymes activity in roots and leaves of maize plant (Zea mays L. cv. SC. 704). Applied Biology, 28(1): 5-22. (in Persian with English abstract).
Rafiee, S., and Asadi-Rahmani, H. (2010). Isolation and identification of different species of Flavobacterium fromThe rhizosphere of wheat cultivated in the different regions of Iran. Journal of Water and Soil, 24(2): 254-261.
Rashidifard, A., Chorom, M., Norozi masir, M., and Roshanfekr, H. (2020). The Effect of Humic Acid and Zinc Application on Some Vegetative Traits and Anti-oxidant Enzymes corn seedling under salinity stress . Iran water and soil research, 51(9). 2393- 2403.
Rubio, V., Bustos, R., Irigoyen, M. L., Cardona-Lopez, X., Rojas-Triana, M., and Paz-Ares, J. (2009). Plant hormones and nutrient signaling. Plant Molecular Biology, 69(3): 61-73.
Said-Al Ahl, H.A.H., and Omer, E.A. (2011). Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57(1): 72-87.
Sanjari, M., Sirousmehr, A.R., and Fakheri, B. ( 2016). The Effects of Drought Stress and Humic Acid on Morphological Traits, Yield and Anthocyanin of Roselle (Hibiscus sabdariffa L.). Journal of Agroecology, 8(3): 346- 358.
Sardashti, A., and Mohammadan Moghadam, S. (2007). Determination of cation exchange capacity of humic acid produced from Nahar Khoran forest soils, cadmium, lead and nickel ions of Gorgan by discontinuous method in water container. Iran Chemical Engineering Publications, 26 (3). 9-17.
Selvakumar, G., Kim, K., Hu, S., and Sa, T. (2014). Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth -promoting rhizobacteria in alleviation of salt stress. In: Parvaiz Ahmad, P., Wani, R.M. (Eds.), Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, pp. 115- 144.
Thi Lua., H., and Bohme, M. (2001). The influence of humic acid on tomato in hydroponic system. Agronomy Journal, 548: 451-458.
Zaraveshan, M., Abdulzadeh, A., Sadeghipour, H.R., and Mehraban Jovini, P. (2020). Comparison of the effect of inorganic silicon and nano silicon on some biochemical and photosynthetic traits in corn plant (Zea mays L.) under salt stress. Journal of Plant Environmental Physiology,15(57): 23- 38.
Zare, H., Ghanbarzadeh, Z., Behdad, A., and Mohsenzadeh, S. (2015). Effect of silicon and nanosilicon on reduction of damage caused by salt stress in maize (Zea mays seedlings). Iranian Journal of Plant Biology, 7(26): 59-74. (in Persian with English abstract).