مروری بر انواع مدالیته های تصویربرداری فوتواکوستیک در کاربردهای پزشکی
محورهای موضوعی : پردازش چند رسانه ای، سیستمهای ارتباطی، سیستمهای هوشمند
1 - استادیار، گروه مهندسی برق، دانشکده برق و کامپیوتر، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
کلید واژه: میکروسکوپی فوتواکوستیک, توموگرافی کامپیوتری فوتواکوستیک, آندوسکوپی فوتواکوستیک, رزولوشن, کنتراست,
چکیده مقاله :
مدالیته های تصویربرداری پزشکی نقش مهمی را در تشخیص، مرحله بندی، درمان و پایش روند درمان بیماری ها ایفا می کنند. یکی از روش هایی که در سال های اخیر وارد عرصۀ تحقیقات پزشکی شده است، تصویربرداری فوتواکوستیک است که به علّت خواصی چون غیرتهاجمی بودن، امنیت بیشتر به دلیل استفاده از تشعشعات غیریونیزان و سهولت کاربرد، در بسیاری از حوزههای پزشکی مورد توجه قرار گرفته است. این تکنیک تصویربرداری ترکیبی از دو تکنولوژی فراصوت و نوری بوده و در نتیجه مهم ترین مزیت و علّت توجه به آن بهره بردن از کنتراست بالای تصویربرداری نوری و رزولوشن بالای تصویربرداری فراصوت می باشد. در این مقاله به بررسی اصول اساسی تصویربرداری فوتواکوستیک و انواع مدالیته های رایج آن در کاربردهای پزشکی شامل میکروسکوپی فوتواکوستیک، توموگرافی کامپیوتری فوتواکوستیک و آندوسکوپی فوتواکوستیک و همچنین چالش های موجود در این حوزه پرداخته ایم. مطالعات انجام شده قابلیت به کارگیری تکنیک فوتواکوستیک را در فراهم آوردن اطلاعات مولکولی، ساختاری و عملکردی از بافت های بیولوژیکی نشان می دهد.
Abstract: Medical imaging modalities play a crucial role in the diagnosis, staging, treatment, and monitoring the treatment process of diseases. Photoacoustic imaging has emerged as a recent addition to medical research, offering non-invasiveness, enhanced safety due to non-ionizing radiation, and ease of application in various medical fields. This imaging technique combines ultrasound and optical technologies, providing the significant advantage of high-contrast optical imaging and high-resolution acoustic imaging. This article reviews the fundamental principles of photoacoustic imaging and its common modalities used in medical applications, including photoacoustic microscopy, photoacoustic computed tomography, and photoacoustic endoscopy, as well as the challenges in this field. Studies indicate the potential of photoacoustic technique in providing molecular, structural, and functional information from biological tissues.
Introduction: Combined imaging methods utilizing the capabilities of integrated systems enhance the quality of obtained images compared to single-modality systems. One such combined method is the photoacoustic tomography, which is based on the photoacoustic effect or the detection of ultrasound waves generated by laser irradiation. Common modalities of photoacoustic tomography include photoacoustic microscopy, photoacoustic computed tomography, and photoacoustic endoscopy, each serving specific imaging depths and resolutions. This study explores the types of photoacoustic imaging modalities and evaluates their capabilities.
Method: This article aims to present fundamental principles of photoacoustic imaging and common modalities through a review of relevant studies. Additionally, it investigates the contrast agents contributing to the imaging capabilities of photoacoustic technique in providing molecular, structural, and functional information of biological tissues.
Results: Photoacoustic imaging, utilizing both ultrasound and optical technologies, produces high-contrast images with desirable spatial resolution. It proves valuable in the fields of diagnosis, staging, and monitoring of various diseases. Microscopic photoacoustic and endoscopic photoacoustic modalities are commonly employed for imaging at millimeter depths with micrometer resolution, while photoacoustic computed tomography is versatile for both microscopic and macroscopic imaging purposes.
Discussion: Photoacoustic imaging plays a crucial role in diagnostic studies from organells to organs, offering high-contrast and high-resolution images while remaining non-invasive and non-ionizing. This method facilitates the examination of essential physiological and determining parameters in specific pathologies, providing insights into molecular, structural, and functional aspects of biological tissues.
[1] M. Hariri and H. Najafy, “Improve the quality of mammogram images by image processing techniques,” Intelligent Multimedia Processing and Communication Systems, vol. 3, issue. 1, pp. 57-69, 2022.
[2] Y. Su, F. Zhang,K. Xu,J. Yao and RK. Wang, “A photoacoustic tomography system for imaging of biological tissues,” Journal of Physics D: Applied Physics, vol. 38, no. 15, pp. 2640, 2005.
[3] LV. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 1, pp. 171-179, 2008.
[4] LV. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Disease Markers, vol. 19, no. 2, 3, pp. 123-138, 2004.
[5] M. Xu and LV. Wang, “Photoacoustic imaging in biomedicine,” Review of Scientific Instruments, vol. 77, no. 4, pp.41101, 2006.
[6] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1, no. 4, pp. 602-631, 2011.
[7] J. Xia, J. Yao and LV. Wang, “Photoacoustic tomography: principles and advances,” Electromagnetic Waves (Cambridge, Mass.), vol. 147, pp. 1, 2014.
[8] AG. Bell, “ART. XXXIV.--On the production and reproduction of sound by light,” American Journal of Science, vol. 20, no. 118, pp. 305, 1880.
[9] AR. Mohammadi-Nejad, M. Mahmoudzadeh, MS. Hassanpour, F. Wallois, O. Muzik, C. Papadelis, A. Hansen, H. Soltanian-Zadeh, J. Gelovani and M. Nasiriavanaki, “Neonatal brain resting-state functional connectivity imaging modalities,” Photoacoustics, vol. 10, pp.1-19, 2018.
[10] J. Benavides-Lara, R. Manwar, LS. McGuire, MT. Islam, A. Shoo, FT. Charbel, MG. Menchaca, AP. Siegel, DA. Pillers, JG. Gelovani and K. Avanaki, “Transfontanelle photoacoustic imaging of intraventricular brain hemorrhages in live sheep,” Photoacoustics, vol. 33, pp. 100549, 2023.
[11] A. Neprokin, C. Broadway, T. Myllylä, A. Bykov and I. Meglinski, “Photoacoustic imaging in biomedicine and life sciences,” Life, vol. 12, no. 4, pp. 588, 2022.
[12] C. Liu and L. Wang, “Functional photoacoustic microscopy of hemodynamics: a review,” Biomedical Engineering Letters, vol. 12, no. 2, pp. 97-124, 2022.
[13] J. Yao and LV. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media & Molecular Imaging, vol. 6, no. 5, pp. 332-345, 2011.
[14] LV. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science, vol. 335, no. 6075, pp. 1458-1462, 2012.
[15] LV. Wang and HI. Wu, Biomedical optics: principles and imaging, John Wiley & Sons, 2012.
[16] S. Hu, K. Maslov, V. Tsytsarev and LV. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” Journal of Biomedical Optics, vol. 14, no. 4, pp. 040503, 2009.
[17] HF. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica and LV. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Applied Physics Letters, vol. 90, no. 5, 2007.
[18] J. Ahn, JY. Kim, W. Choi and C. Kim, “High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers,” Photoacoustics, vol. 23, pp. 100282, 2021.
[19] C. Bench, A. Hauptmann and B. Cox, “Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions,” Journal of Biomedical Optics, vol. 25, no. 8, pp. 085003, 2020.
[20] X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica and LV. Wang, “ Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nature Biotechnology, vol. 21, no. 7, pp. 803-806, 2003.
[21] C. Liu and L. Wang, “Functional photoacoustic microscopy of hemodynamics: a review,” Biomedical Engineering Letters, vol. 12, no. 2, pp. 97-124, 2022.
[22] RG. Kolkman, W. Steenbergen and TG. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers in Medical Science, vol.21, pp. 134-139, 2006.
[23] J. Yao and LV. Wang, “Photoacoustic microscopy,” Laser & Photonics Reviews, vol. 7, no. 5, pp. 758-778, 2013.
[24] C. Li and LV. Wang, “Photoacoustic tomography and sensing in biomedicine,” Physics in Medicine & Biology, vol. 54, no. 19, pp. R59, 2009.
[25] W. Liu and J. Yao, “Photoacoustic microscopy: principles and biomedical applications,” Biomedical Engineering Letters, vol. 8, pp. 203-213, 2018.
[26] S. Jeon, J. Kim, D. Lee, JW. Baik and C. Kim, “Review on practical photoacoustic microscopy,” Photoacoustics, vol. 15, pp. 100141, 2019.
[27] HF. Zhang, K. Maslov and LV. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” Journal of Biomedical Optics, vol. 14, no. 2, pp. 024050, 2009.
[28] E. De Montigny, “Photoacoustic tomography: principles and applications,” Department of Physics Engineering, polytechnic school Montreal, 2011.
[29] C. Li, A. Aguirre, J. Gamelin, A. Maurudis, Q. Zhu and LV. Wang, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” Journal of Biomedical Optics, vol. 15, no. 1, pp. 010509, 2010.
[30] HP. Brecht, R. Su, M. Fronheiser, SA. Ermilov, A. Conjusteau and AA. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” Journal of Biomedical Optics, vol. 14, no. 6, pp. 064007, 2009.
[31] J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, LV. Wang and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” Journal of Biomedical Optics, vol. 13, no. 2, pp. 024007, 2008.
[32] RA. Kruger, RB. Lam, DR. Reinecke, SP. Del Rio and RP. Doyle, “Photoacoustic angiography of the breast,” Medical Physics, vol. 37, no. 11, pp. 6096-6100, 2010.
[33] L. Song, K. Maslov, KK. Shung and LV. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” Journal of Biomedical Optics, vol. 15, no. 2, pp. 02133, 2010.
[34] O. Balogun, B. Regez, HF. Zhang, S. Krishnaswamy, “Real-time full-field photoacoustic imaging using an ultrasonic camera,” Journal of Biomedical Optics, vol. 15, no. 2, pp. 021318, 2010.
[35] JM. Yang, K. Maslov, HC. Yang, Q. Zhou, KK. Shung and LV. Wang, “Photoacoustic endoscopy,” Optics Letters, vol. 34, no. 10, pp. 1591-1593, 2009.
[36] JM. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, KK. Shung and LV. Wang, “Toward dual-wavelength functional photoacoustic endoscopy: laser and peripheral optical systems development,” InPhotons Plus Ultrasound: Imaging and Sensing, vol. 8223, pp. 242-248, 2012.
[37] S. Hu and LV. Wang, “Photoacoustic imaging and characterization of the microvasculature,” Journal of Biomedical Optics, vol. 15, no. 1, pp. 011101, 2010.
[38] C. Zhang, K. Maslov and LV. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Optics Letters, vol. 35, no. 19, pp. 3195-3197, 2010.
[39] S. Hu, K. Maslov and LV. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Optics Letters, vol. 36, no. 7, pp. 1134-1136, 2011.
[40] CP. Favazza, O. Jassim, LA. Cornelius and LV. Wang, “In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus,” Journal of Biomedical Optics, vol. 16, no. 1, pp. 016015, 2011.
[41] DK. Yao, K. Maslov, KK. Shung, Q. Zhou and Wang LV, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Optics Letters, vol. 35, no. 24, pp. 4139-4141, 2010.
[42] M. Afsardeir and M. Afsardeir, “A new algorithm for data clustering using combination of genetic and fireflies algorithms,” Intelligent Multimedia Processing and Communication Systems, vol. 2, issue. 4, pp. 35-43, 2022.
[43] J. Yao, KI. Maslov, Y. Zhang, Y. Xia and LV. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” Journal of Biomedical Optics, vol. 16, no. 7, pp. 076003, 2011.
[44] Z. Xu, Q. Zhu and LV. Wang, “In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury,” Journal of Biomedical Optics, vol. 16, no. 6, pp. 066020, 2011.
[45] JT. Oh, ML. Li, HF. Zhang, K. Maslov, G. Stoica and LV. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” Journal of Biomedical Optics, vol. 11, no. 3, pp. 034032, 2006.