برنامهریزی همزمان نگهداری و تعمیرات و کنترل موجودی انبار قطعات یدکی: مطالعه موردی ربات شاتل پیش رنگ شرکت خودروسازی
محورهای موضوعی : مدیریت صنعتیseyd mohamad reza aboalaghaey 1 , Davood Mohammaditabar 2 , Sadigh Raissi 3
1 - Department of Industrial Engineering, Electronic Branch, Islamic Azad University, Tehran, Iran.
2 - Assistant Professor, Department of Industrial Engineering, Islamic Azad University, Tehran, Iran.
3 - Associate Professor, Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
کلید واژه: قطعات یدکی, برنامهریزی نت, کنترل موجودی, فرآیند پواسان,
چکیده مقاله :
برنامه ریزی نگهداری و تعمیر (نت) ماشینآلات کارخانه یکی از ابزار مهم در کاهش هزینههای عملیاتی است؛ مدیریت کنترل موجودی قطعات یدکی نقش پررنگی در عملکرد سیاست های نت دارد. در این تحقیق مدلسازی یکپارچه موجودی قطعات یدکی و برنامهریزی نت جهت تعیین سطح بیشینه موجودی و دوره بازپرسازی در سیستم (S,T) به همراه تعیین زمان بهینه تعویض پیشگیرانه ارائه می شود. مجموع هزینههای مرتبط با نظام نت، نظیر هزینه سفارش دوره ای و اضطراری و هزینههای امور بازرسی و تعمیرات در تابع هدف مدل کمینه می شوند. برای نشان دادن توانمندی و کارایی مدل، نتایج مطالعه موردی در خطوط پیش رنگ یک شرکت خودروسازی برای تعیین سیاستهای مدیریت موجودی قطعه ای پرمصرف و بحرانی پیادهسازی شدهاست. همچنین بهمنظور تحلیل پایداری نتایج تحقیق، حساسیت نتایج به تغییرات پارامترهای ورودی بررسی شدهاست. براساس نتایج، هزینه کل متاثر از نرخ خرابی، مدتزمان تأمین قطعه و هزینه تعویض قطعات معیوب است و در این خصوص بیشترین حساسیت را به مقادیر نرخ خرابی و مدتزمان تأمین قطعه دارد. استفاده از نتایج تحقیق در مواردی که نرخ خرابی نسبتا ثابت است توصیه میشود.
Carrying out maintenance planning for machine tools is one of the critical factors in reducing operating costs. Inventory management is a key element on the performance of the maintenance policy. Through current research, an integrated inventory control of spare parts and maintenance scheduling is proposed to determine the maximum inventory level as well replenishment cycle (S,T), along with the determination of the optimal preventive maintenance period. The total cost associated with the maintenance system, such as the cost of periodical and emergency orders and the costs of inspections and repairs are minimized via the model objective function. To illustrate the capability and performance of the model, the results of applying the model into a case study is reported in an automotive pre-paint line for determining inventory control policies of a critical item. In addition, in order to analyze the stability of the results, the sensitivity of the variables to the changes in input parameters has been investigated. Based on the results, the total cost is affected by the failure rate, the lead time period, and the cost of replacing defective items. In this regard, the system is more sensitive to failure rate and the lead time. In the case of constant failure rates, applying the proposed method might be successful.
Management and Accounting Conference.
2. Barlow, R.E. & Proschan F. (1965). Mathematical theory of Reliability. New York:
Wiley.
3. Chiang, C., & Gutierrez, G.J. (1996). A periodic review inventory system with two
supply modes. European Journal of Operational Research, 94(3), 527-547.
4. Cox, D.R., (1962). Renewal theory (Vol. 1). London: Methuen.
5. Heidari, E. (2016) Optimization of inventory control costs and process quality by taking
into account statistical indicators and optimal maintenance policy. Master Degree thesis.
(in persian)
6. Keizer, M.C.A.O., Teunter, R.H., & Veldman, J. (2017). Joint condition-based
maintenance and inventory optimization for systems with multiple components. European
Journal of Operational Research 257(1), 209-222.
7. Keizer, M.C.O., Teunter, R.H., Veldman, J., & Babai, M.Z. (2018). Conditionbased
maintenance for systems with economic dependence and load sharing, International
Journal of Production Economics,195, 319-327.
8. Kilpi, J., Töyli, J., & Vepsäläinen, A. (2009). Cooperative strategies for the availability
service of repairable aircraft components. International Journal of Production Economics,
117(2), 360–370.
9. Panagiotidou, S., (2014). Joint optimization of spare parts ordering and maintenance
policies for multiple identical items subject to silent failures. European Journal of.
European Journal of Operational Research 235, 300–314
10. Saeedi Sogh, Y., Ahmadi, A., & Ramazani, S. (2015). Optimization of the combination
f inventory of spare parts and maintenance activities. Supply Chain Management. 17 (49)
_||_
11. Taslimi, E., Nekoei, M., & Kavosh, S. (2010). Provide an optimal method for ordering
spare parts in Mobarakeh Steel Complex. 7th International Industrial Engineering
Conference. (in persian)
12. Siddique, P. J., Luong, H. T., & Shafiq, M. (2018). An optimal joint maintenance and
spare parts inventory model. International Journal of Industrial and Systems Engineering,
29(2), 177-192.
13. Valmohammadi, C., Sufi Abadi, J., & Lotfzadeh, F., Paizi (2017), Choosing
Maintenance Maintenance Strategy to Improve Reliability and Reliability Measurement
Indices. Journal of Productivity Management (beyond Management), 11(2), 175-196.
14. Wang, W., & Syntetos A. (2011). Spare parts demand: linking forecasting to
equipment maintenance. Transportation Research Part E: Logistics and Transportation
Review, 47(6), 1194-1209.
15. Wang, W. (2012). A stochastic model for joint spare parts inventory and planned
maintenance optimisation. European Journal of Operational Research, 216(1), 127–139.
16. Zahedi-Hosseini, F., Scarf, P., & Syntetos, A. (2017). Joint optimisation of inspection
maintenance and spare parts provisioning: a comparative study of inventory policies using
simulation and survey data. Reliability Engineering & System Safety, 168, 306-316.
17. Zahedi-Hosseinia, F., Scarfb, P., & Syntetosc, A. (2018). Joint maintenance-inventory
optimisation of parallel production systems. Journal of Manufacturing Systems, 48, 73-86.
18. Zhang, X., & Zeng, J. (2017). Joint optimization of condition-based opportunistic
maintenance and spare parts provisioning policy in multiunit systems, European Journal of
Operational Research, 262(2), 479-498.