Numerical Solution Two-Dimensional Volterra-Fredholm Integral Equations of the Second Kind with Block-Pulse Functions Based on Legendre Polynomials
Subject Areas : International Journal of Mathematical Modelling & ComputationsJafar Khazaian 1 , Nouredin Parandin 2 * , Farajollah Mohammadi Yaghoobi 3 , Nasrin Karami Kabir 4
1 - Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
2 - Department of Mathematics
Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
3 - Department of Mathematics
Hamedan Branch, Islamic Azad University Hamedan, Iran.
4 - Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Keywords: Volterra-Fredholm integral equations, Operational matrix, legendre polynomials, Block-pulse functions,
Abstract :
In this paper, we present a new numerical technique based on Block-pulse functions to solve two-dimensional Volterra-Fredholm integral equations of the second kind. To produce Block-pulse functions, the orthogonal Legendre polynomials is used. Furthermore, operational matrix is applied to convert two-dimensional Volterra-Fredholm integral equations to a linear algebraic system. The convergence analysis of the new method is discussed. Finally, some numerical examples are given to confirm the applicability and efficiency of the new method for solving two-dimensional Volterra-Fredholm integral equations of the second kind.
[1] A. M. Al-Bugami, Efficient numerical algorithm for the solution of nonlinear two-dimensional
Volterra integral equation arising from torsion problem, Adv. Math. Phys., 2021 (2021), Article
ID 6559694, doi:10.1155/2021/6559694.
[2] J. T. A. Al-Miah and A. H. Shuaa Taie, A new method for solutions Volterra-Fredholm integral equation of the second kind, J. Phys.: Conf. Ser., 1294 (2019) 032026, doi:10.1088/1742-
6596/1294/3/032026.
[3] E. Babolian, S. Bazm and P. Lima, Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Commun. Nonlinear Sci. Numer. Simul., 16 (3) (2011)
1164–1175.12 J. Khazaeian et al./ IJM2C, 12 - 01 (2022) 1-14.
[4] F. Bazrafshan, A. H. Mahbobi, A. Neyrameh, A. Sousaraie and M. Ebrahim, Solving two-dimensional
integral equations, J. King Saud Univ. Sci., 23 (2011) 111–114.
[5] A. H. Borzabadi and M. Heidari, A successive iterative approach for two dimensional nonlinear
Volterra-Fredholm integral equations, Iran. J. Numer. Anal. Optim., 4 (1) (2014) 95–104.
[6] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods, SIAM J. Numer. Anal., 27 (4) (1990) 978–1000.
[7] Y. Cherruault, G. Saccomandi and B. Some, New results for convergence of Adomians method
applied to integral equations, Math. Comput. Model., 16 (2) (1992) 85–93.
[8] O. Diekman, Thresholds and travelling waves for the geographical spread of infection, J. Math.
Biol., 6 (1978) 109–130.
[9] H. Du and M. Cui, A method of solving nonlinear mixed Volterra-Fredholm integral equation, Appl.
Math. Sci., 1 (2007) 2505–2516.
[10] M. Erfanian and H. Zeidabadi, Solving two-dimensional nonlinear mixed Volterra Fredholm integral
equations by using rationalized Haar functions in the complex plane, J. Math. Model., 7 (4) (2019)
399–416.
[11] H. Guoqiang, Asymptotic error expansion for the Nystr¨om method for a nonlinear Volterra-Fredholm
integral equations, J. Comput. Math. Appl., 59 (1995) 49–59.
[12] H. Guoqiang and Z. Liqing, Asymptotic expansion for the trapezoidal Nystr¨om method of linear
Volterra-Fredholm integral equations, J. Comput. Appl. Math., 51 (1994) 339–348.
[13] L. Hacia, On approximate solution for integral equations of mixed type, ZAMM J. Appl. Math.
Mech., 76 (1996) 415–416.
[14] R. M. Hafez, E. H. Doha, A. H. Bhrawy and D. Baleanu, Numerical solutions ot two-dimensional
mixed Volterra-Fredholm integral equations via bernouli collocation method, Rom. J. Phys., 62 (3)
(2017), Article no. 111.
[15] C. H. Hsiao, Hybrid function method for solving Fredholm and Volterra integral equations of the
second kind, J. Comput. Appl. Math., 230 (1) (2019) 59–68.
[16] Z. H. Jiang and W. Schaufelberger, Block Pulse Functions and Their Applications in Control
Systems, Spriger-Verlag, Berlin, (1992).
[17] K. Maleknejad and M. Hadizadeh, A new computational method for Volterra-Fredholm integral
equations, J. Comput. Math. Appl., 37 (1999) 1–8.
[18] P. G. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations,
Numer. Math., 56 (1989) 409–424.
[19] S. Micula, Numerical solution of two-dimensional FredholmVolterra integral equations of the second
kind, Symmetry, 1326 (2021) 1–13.
[20] G. A. Mosa, M. A. Abdou and A. S. Rahby, Numerical solutions for nonlinear Volterra-Fredholm
integral equations of the second kind with a phase lag, AIMS Math., 6 (8) (2021) 8525–8543.
[21] H. R. Thieme, A model for spatial spread of an epidemic, J. Math. Biol., 4 (1977) 337–351.