Clustering DMUs by projecting them onto the nearest MPSS
Subject Areas : International Journal of Data Envelopment AnalysisFatemeh Mohammadi 1 , masoud sanei 2 * , Mohsen Rostamy 3
1 - mathematics branch of science and research university, Tehran, Iran.
2 - iau
3 - Department of Mathematics, science and research Branch, Islamic Azad University, Tehran, Iran
Keywords: DEA, MPSS, Benchmarking (B.M), Clustering, Index Silhouette,
Abstract :
Cluster analysis in data envelopment analysis (DEA) is determining clusters for the units under evaluation regarding to their similarity. which measure of distances define their similarities. Over the years, researches have been carried out in the field of clustering of DMUs. In this paper, an algorithm for clustering units using projecting them on the frontier is presented. In fact, we gained for every decision making unit (DMU), nearest most productive scale size (MPSS) as target, to find number of clusters 2 method applied. Silhouette index was used to measure similarity value for our clustering. Numerical examples are provided to illustrate the proposed method and its results.
1- J. Han, M. Kamber, j. Pei., (2011), Data mining concepts and Techniques, morgan kaufmann, 3rd edition, 744 pages.
2- Aparicio. J., Ruiz. JL., Sirvent. I. Closest targets and minimum distance to the Pareto-efficient frontier in DEA. Journal of productivity Analysis 28(3):209-218, 2007.
3- R. D. Banker, (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17, 35–44.
4- R. D. Banker, A. Charnes, W.W. Cooper, Some models for Estimating technical and scale inefficiency in data envelopment analysis, Manag.Sci. 30 (1984) 1078-1092.
5- R. D. Banker, & A. Maindiratta, (1986). Piecewise log linear estimation of efficient production surfaces. Management Science, 32, 126–135.
6- R. D. Banker, & R. M. Thrall, (1992). Estimation of returns to scale using data envelopment analysis. European Journal of Operational Research, 62, 74–84.
7- A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision-making units, Eur. J. Oper. Res. 2 (1978) 429{444.
8- W. W. Cooper, R.G. Thompson, R.M. Thrall, Extensions and new developments in DEA, Annal. Oper. Res. 1996; 66: 3–45.
9- X. Dai, T. Kuosmanen, Best-practice bench marking using clustering methods: Application to energy regulation. Omega, 2014; 42(1): 179-188.
10- H. Didehkhani, F. Hosseinzade Lotfi, S. Sadi-Nezhad, Practical benchmarking in DEA using artificial DMUs. Journal of Industrial Engineering International, 2019; 15. 293-301.
11- R. Eslami, M. Khodabakhshi, G.R. Jahanshahloo, F. Hosseinzadeh lotfi, M. Khoveyni, estimating most productive scale size with imprecise-chance constrained input–output orientation model in data envelopment analysis, Computers & Industrial Engineering 63(1) 2012,254-261.
12- Førsund, On the calculation of the scale elasticity in DEA models. Journal of Productivity Analysis, 1996; 7, 283–302.
13- R. Fare, S. Grosskopf, C. A. K. Lovell, The Measurement of Efficiency of Production. Kluwer Nijhoff, Boston, 1985.
14- R. Fare, S. Grosskopf, C. A. K. Lovell, Production Frontiers. Cambridge University Press, 1994.
15- B. Golany, G. Yu, Estimating returns to scale in DEA. European Journal of Operational Research, 1997; 103: 28–37.
16- A. Hatami-Marbini, Z. G. Beigi, J. L. Hougaard, K. Gholami, Measurement of Returns to-Scale using Interval Data Envelopment Analysis Models, Computers & Industrial Engineering (2017),
17- F. Hosseinzadeh Lotfi, A. Hatami-Marbini, PJ. Agrell, N. Aghayi, K. Gholami, allocating fixed resources and setting targets using a common weights DEA approach. Computer and industrial engineering, 2013; 64,2. 631-640.
18- G. R. Jahanshahloo, and M. Khodabakhshi, using input–output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation.2003, 146(2–3), 849–855
19- G. R. Jahanshahloo, M. Soleimani-damaneh, M. Rostamy-malkhalifeh, an enhanced procedure for estimating returns-to-scale in DEA. Appl Math Comput, 2005; 171: 1226–1238.
20- L. Karamali, A. Memariani, G.R. Jahanshahloo, M. Rostamy-Malkhalifeh, Benchmarking by an integrated data envelopment analysis-artificial neural network algorithm. J. Basic. Appl. Sci. RES, 2013; 3,6,892-898.
21- M. Khodabakhshi," Estimating Most Productive Scale Size in Stochastic Data Envelopment Analysis ", Economic Modelling, 26, 2009, 968-973.
22- C. Y. Lee, Most productive scale size versus demand fulfillment: A solution to the capacity dilemma. European Journal of Operational Research, 2016; 248(3): p. 954-962.
23- M. Omidi, M. Rostamy-Malkhalifeh, A. Payan, Estimation of Overall Returns to Scale (RTS) of a Frontier Unit Using the Left and Right RTS. Comput Econ, 2019; 53, 633–655.
24- R. W. Po, Y.Y. Guh, M.S. Yang, a new clustering approach using data envelopment analysis. European Journal of operational research, 2009; 199, 276-284.
25- S. Razipour-GhalehJough, F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, M. Rostamy-malkhalifeh, H. Sharafi, finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis. Annals of Operations Research, 2020; 288, 755–787.
26- J. L. Ruize, I. Sirvent, common benchmarking and ranking of units with DEA. Omega,2016; 65,1-9.
27- Y. M. Wang, and Y.-X. Lan, Estimating most productive scale size with double frontiers data envelopment analysis. Economic Modelling, 2013; 33: p. 182-186.
28- B. K. Sahoo, M. Khoveyni, R. Eslami, p. Chaudhury, Returns to scale and most productive scale size in DEA with negative data. European Journal of Operational Research, 2016; 255(2),545-558.
29- L. M. Seiford, J. Zhu, On alternative optimal solutions in the estimation of returns to scale in DEA. European Journal of Operational Research, 1998; 108 (1), 149–152.
30- L. M. Seiford, J. Zhu, An investigation of returns to scale under Data Envelopment Analysis. Omega, 1999; 27, 1–11.
31- M. Soleimani-damaneh, G. R. Jahanshahloo, S. Mehrabian, M. Hasannasab, Scale elasticity and returns to scale in the presence of alternative solutions. J Comput Appl Math, 2009; 233: 127–136.
32- M. Soleimani-damaneh, G. R. Jahanshahloo, S. Mehrabian, M. Hasannasab, Returns to scale and scale elasticity in the presence of weight restrictions and alternative solutions. Knowl-Based Syst, 2010; 23: 86–93.
33- M. Soleimani-damaneh, A. Mostafaee, a comment on ‘‘Returns to scale and scale elasticity in data envelopment analysis’’. Eur J of Oper Res., 2008; 184:1179–1181.
34- M. Soleimani-damaneh, A. Mostafaee, Stability of the classification of returns to scale in FDH models. Eur J of Oper Res., 2009; 196: 1223-1228.
35- T. Sueyoshi, M. Goto, Measurement of returns to scale and damages to scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs? Eur J of Oper Res., 2011; 211: 76–89.
36- T. Sueyoshi, K. Sekitani, Returns to scale in dynamic DEA. Eur J of Oper Res., 2005; 161: 536–544.
37- T. Sueyoshi, K. Sekitani, Measurement of returns to scale using a non-radial DEA model: A range-adjusted measure approach. Eur J of Oper Res., 2007a; 176: 1918–1946.
38- T. Sueyoshi, K. Sekitani, the measurement of returns to scale under a simultaneous occurrence of multiple solutions in a reference set and a supporting hyperplane. Eur J of Oper Res., 2007b; 181: 549–570.
39- J. Wu, L. Liang, M. Song, Performance based clustering for benchmarking of container ports: an application of DEA and cluster analysis technique. International journal of computational intelligence system, 2010; 3(6), 709-722.
40- M. Zarepisheh, M. Soleimani-damaneh, L. Pourkarimi, Determination of returns to scale by CCR formulation without chasing down alternative optimal solutions. Applied Mathematics Letters, 2006; 19(9),964–967.
41- M. Zarepisheh, M. Soleimani-damaneh, A dual simplex-based method for determination of the right and left returns to scale in DEA. Eur J of Oper Res., 2009; 194: 585–591.
42- J. Zhu, Z.H. Shen, a discussion of testing DMU’s returns to scale in DEA, Eur. J. Oper. Res., 1995; 81, 590–596.