Optical Properties of Coupled Gold Nanoparticles: A Numerical Study for Photothermal Applications
Subject Areas : Photonics in Cancer TreatmentRaha Rasouli Sghai 1 * , Vahid Rajabpour 2
1 - Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
2 - Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Keywords: Photothermal Therapy, Localized Surface Plasmon Resonance, Gold Nanodimers, Nanorod, Nanopyramid, Nanocube, Field Enhancement,
Abstract :
Photothermal therapy (PTT) using plasmonic nanoparticles, particularly gold, is a promising method for cancer cell ablation. However, optimizing the morphology and size of nanoparticles for efficient light absorption and heat conversion remains challenging. Plasmonic metamolecules, like gold nanodimers, demonstrate significant localized field enhancement and strong infrared light absorption. In this study, we investigate gold nanoparticles with spherical, rod, pyramid, and cubic morphologies in both monomeric and dimeric forms. For dimer structures, side-by-side and end-to-end couplings were considered. Our analysis includes parameters such as absorption cross-section, photothermal conversion efficiency (PCE), and field enhancement to compare the optical properties of these nanostructures within the first biological window. Our findings suggest that gold nanopyramids, with their suitable PCE, intermediate peak wavelength spacing in side-by-side and end-to-end dimers, and significant local field enhancement, are more controllable candidates for photothermal applications.
1. Zhao, L.; Zhang, X.; Wang, X.; Guan, X.; Zhang, W.; Ma, J., Recent advances in selective photothermal therapy of tumor. Journal of nanobiotechnology 2021, 19, 1-15.
2. Zhang, L.; Oudeng, G.; Wen, F.; Liao, G., Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomaterials Research 2022, 26, (1), 61.
3. Yu, S.; Xia, G.; Yang, N.; Yuan, L.; Li, J.; Wang, Q.; Li, D.; Ding, L.; Fan, Z.; Li, J., Noble Metal Nanoparticle-Based Photothermal Therapy: Development and Application in Effective Cancer Therapy. International Journal of Molecular Sciences 2024, 25, (11), 5632.
4. Dykman, L.; Khlebtsov, N., Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews 2012, 41, (6), 2256-2282.
5. Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A., Surface plasmon resonance in gold nanoparticles: a review. Journal of physics: Condensed matter 2017, 29, (20), 203002.
6. Lv, Z.; He, S.; Wang, Y.; Zhu, X., Noble metal nanomaterials for NIR‐triggered photothermal therapy in cancer. Advanced healthcare materials 2021, 10, (6), 2001806.
7. Breitenborn, H.; Dong, J.; Piccoli, R.; Bruhacs, A.; Besteiro, L.; Skripka, A.; Wang, Z.; Govorov, A.; Razzari, L.; Vetrone, F., Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation. Apl Photonics 2019, 4, (12).
8. Smith, A. M.; Mancini, M. C.; Nie, S., Second window for in vivo imaging. Nature nanotechnology 2009, 4, (11), 710-711.
9. Wu, X.; Suo, Y.; Shi, H.; Liu, R.; Wu, F.; Wang, T.; Ma, L.; Liu, H.; Cheng, Z., Deep-tissue photothermal therapy using laser illumination at NIR-IIa window. Nano-Micro Letters 2020, 12, 1-13.
10. Baffou, G.; Quidant, R.; García de Abajo, F. J., Nanoscale control of optical heating in complex plasmonic systems. ACS nano 2010, 4, (2), 709-716.
11. Farooq, S.; Rativa, D.; de Araujo, R. E., Quantitative analysis of high performance plasmonic metamolecules for targeted deep tissues applications. Plasmonics 2023, 18, (6), 2475-2482.
12. Sahu, A. K.; Raj, S., Understanding the Coupling Mechanism of Gold Nanostructures by Finite-Difference Time-Domain Method. International Journal of Nanoscience 2022, 21, (01), 2250007.
13. Pratap, D.; Shah, R. K.; Khandekar, S.; Soni, S., Photothermal effects in small gold nanorod aggregates for therapeutic applications. Applied Nanoscience 2022, 12, (7), 2045-2058.
14. Sahu, A. K.; Raj, S., Effect of plasmonic coupling in different assembly of gold nanorods studied by FDTD. Gold Bulletin 2022, 55, (1), 19-29.
15. Pal, S. K.; Chatterjee, H.; Ghosh, S. K., Manipulating the confinement of electromagnetic field in size-specific gold nanoparticles dimers and trimers. RSC advances 2019, 9, (72), 42145-42154.
16. Khoury, C. G.; Norton, S. J.; Vo-Dinh, T., Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. Acs Nano 2009, 3, (9), 2776-2788.
17. Lipchus, E. J. FEM Simulations of Plasmon Field Enhancement in Gold Nanoparticle Dimers and Gold Nanoparticle-Nanorod Dimers. University of Massachusetts Boston, 2023.
18. Mencarelli, E.; Fanò, L.; Tarpani, L.; Latterini, L., Modelling the optical properties of metal nanoparticles: analytical vs finite elements simulation. Materials Today: Proceedings 2015, 2, (1), 161-170.
19. Rajabpour, V.; Abbasian, K.; Ertugrul, M., Core–Shell Plasmonic Nanostructures for Hyperthermia of Cancer and Tumor Cells. Plasmonics 2024, 1-13.
20. Sun, M.; Cheng, Z.; Chen, W.; Jones, M., Understanding symmetry breaking at the single-particle level via the growth of tetrahedron-shaped nanocrystals from higher-symmetry precursors. ACS nano 2021, 15, (10), 15953-15961.
21. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P., Gold nanorods: synthesis, characterization and applications. Coordination chemistry reviews 2005, 249, (17-18), 1870-1901.
22. Wang, Y.; Chen, J.; Zhong, Y.; Jeong, S.; Li, R.; Ye, X., Structural diversity in dimension-controlled assemblies of tetrahedral gold nanocrystals. Journal of the American Chemical Society 2022, 144, (30), 13538-13546.
23. Yoo, S.; Youn, G.; Lee, H.; Kwon, J. S.; Lee, Y.; Lee, S., Synthesis of ultra‐small gold nanorods: Effect of reducing agent on reaction rate control. Bulletin of the Korean Chemical Society 2023, 44, (8), 648-652.
24. Huang, C.-J.; Wang, Y.-H.; Chiu, P.-H.; Shih, M.-C.; Meen, T.-H., Electrochemical synthesis of gold nanocubes. Materials Letters 2006, 60, (15), 1896-1900.
25. Khan, A. W.; Lali, N. S.; Sabei, F. Y.; Irfan, M. I.; Naeem-ul-Hassan, M.; Sher, M.; Safhi, A. Y.; Alsalhi, A.; Albariqi, A. H.; Kamli, F., Sunlight-assisted green synthesis of gold nanocubes using horsetail leaf extract: A highly selective colorimetric sensor for Pb2+, photocatalytic and antimicrobial agent. Journal of Environmental Chemical Engineering 2024, 12, (3), 112576.
26. Schwartzberg, A. M.; Olson, T. Y.; Talley, C. E.; Zhang, J. Z., Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. The Journal of Physical Chemistry B 2006, 110, (40), 19935-19944.
27. Multiphysics, C., Introduction to comsol multiphysics®. COMSOL Multiphysics, Burlington, MA, accessed Feb 1998, 9, (2018), 32.
28. Pryor, R. W., Multiphysics modeling using COMSOL®: a first principles approach. Jones & Bartlett Publishers: 2009.
29. Johnson, P. B.; Christy, R.-W., Optical constants of the noble metals. Physical review B 1972, 6, (12), 4370.
30. Liu, Y.; Kangas, J.; Wang, Y.; Khosla, K.; Pasek-Allen, J.; Saunders, A.; Oldenburg, S.; Bischof, J., Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Nanoscale 2020, 12, (23), 12346-12356.