Performance and Oxidative Stress Biomarkers of West African Dwarf Goats Fed Diet Containing Incremental Sodium Humate
Subject Areas : CamelT.T. Ikyume 1 * , A.O. Yusuf 2 , A.O. Oni 3 , O.S. Sowande 4 , S. Ikuejamoye-Omotore 5 , S.S. Dansu 6
1 - Department of Animal Production, Federal University of Agriculture, Makurdi, Nigeria|Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
2 - Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
3 - Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, Nigeria
4 - Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
5 - Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
6 - Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
Keywords: digestibility, growth performance, goats, Oxidative stress, sodium humate,
Abstract :
Problems relating to reduced performance owing to mineral deficiencies in grazing animals and oxidative stress occasioned by changing weather condition can be addressed through strategic mineral supplementation and improving antioxidant capacity of the animals. A 97-day trial was designed to assess the performance and apparent nutrient digestibility of West African Dwarf (WAD) goats fed diets with incremental levels of sodium humate. Thirty (30) WAD bucks of ages between 10-15 months were used for this study. The bucks were randomly assigned to five dietary treatments containing 0, 5, 7.5, 10 and 12.5 g/kg diet of sodium humate laid out as completely randomized design. Data on weight changes, dry matter concentrate intake, feed conversion ratio (FCR), nutrient digestibility and rate of mineral absorption were obtained and statistically analysed using the generalized linear model (GLM) of Statistical Package for Social Sciences (SPSS) (version 23). Results revealed that sodium humate supplementation improved (p <0.05) weight gain, FCR, mineral (Zn, Cu, Mn and Na) absorption and nutrient (dry matter (DM), crude protein (CP), crude fibre (CF), ash, ether extracts (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF)) digestibility. Supplementation of sodium humate decreased concentrate intake (p <0.05). After 30 days of sodium humate supplementation, malondialdehyde (MDA) increased (p <0.05) at higher levels, glutathione peroxidase also increased up to the level of 7.5 g/kg diet sodium humate and then decreased in subsequent levels, with superoxide dismutase (SOD) observed to decrease (p <0.05). However, at 90 days of sodium humate supplementation, MDA, nitric oxide (NO) and bilirubin decreased (p <0.05) while albumin and uric acid increased (p <0.05).Conclusively, up to 12.5 g/kg diet supplementation of sodium humate sufficiently enhanced performance of WAD goats while also improving their antioxidant capacity.
Agazzi A., Cigalino G., Mancin G., Savoini G. and Dell’Orto V. (2007). Effects of dietary humates on growth and an aspect of cell-mediated immune response in newbornkids. Small Rumin. Res. 72, 242-245.
Ajala M.K., Lamidi O.S. and Otaru S.M. (2008). Peri-urban small ruminant production in northern Guinea savannah, Nigeria. Asian J. Anim. Vet. Adv. 3(3), 138-146.
AOAC. (2005). Official Methods of Analysis. 18th Ed. Association of Official Analytical Chemists, Arlington, Washington, DC., USA.
Arthington J.D. (2017). Trace mineral supplementation of grazing beef cattle. Pp. 136-148 in Proc. Appl. Reprod. Strategies Beef Cattle, Manhattan, Kansas.
Beppu F., Niwano Y., Tsukui T., Hosokawa M. and Miyashita K. (2009). Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J. Toxicol. Sci. 34(5), 501-510.
Brown M.S., Lawrence T.E., Ponce C.H., Pulikanti R., Smith S.R. and Mitchell C.S. (2007). Effects of a humate product on growth performance, carcass merit, and tissue and serum mineral composition of individually fed steers. J. Anim. Sci. 85, 357-361.
Chen W., Cheng X., Chen J., Yi X., Nie D., Sun X., Qin J., Tian M., Jin G. and Zhang X. (2014). Lyciumbarbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PLoS One. 9, e88076.
Chirase N.K., Greene L.W., Mccollum F.T., Auvermann B.W. and Cole N.A. (2000). Effect of Bovipro on performance and serum metabolites concentrations of beef steers. Western Section American Soc. Anim. Sci. Proc. 51, 415-418.
Covington B.R., Ramsey S., Greene L.W. and Byers F.M. (1997). Effects of humate on feedlot performance and carcass characteristics in feedlot lambs. J. Anim. Sci. 75, 270-278.
Cusack P.M.V. (2008). Effects of a dietary complex of humic and fulvic acids on the health and production of feed lot cattle destined for the Australian domestic market. Australian Vet. J. 86, 46-49.
Davison G. (2011). Innate immune responses to a single session of sprint interval training. Appl. Physiol. Nutr. Metab. 36(3), 395-404.
Degirmencioglu T. (2012). Possibilities of using humic acid in diets for Saanen goats. Mljekarstvo. 62(4), 278-283.
El-Zaiat H.M., Morsy A.S., El-Wakeel E.A., Anwer M.M. and Sallam S.M. (2018). Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J. Anim. Feed Sci. 27, 105-113.
Glantzounis G.K., Tsirnoyiannis E.C., Kappas A.M. and Galaris D.A. (2005). Uric acid and oxidative stress. Curr. Pharm. Des. 11, 1-7.
Hayirl A., Esenbuga N., Macit M., Lacin E., Karaoglu M., Karaca H. and Yildiz L. (2005). Nutrition practice to alleviate the adverse effects of stress on laying performance, metabolic profile, and egg quality in peak producing hens: I. The humate supplementation. Asian-Australasian J. Anim. Sci. 18, 1310-1319.
Ho K.J., Liu T.K., Huang T.S. and Lu F.J. (2003). Humic acid medi-ates iron release from ferritin and promotes lipid per- oxidation in vitro: A possible mechanism for humic acid-induced cytotoxicity. Arch. Toxicol. 77, 100-109.
Humin Tech. (2004). Humin Animal Feed Supplements and Veterinary Medicine and Humic Acid based Products. Humintech-Humintech GmbH, Heerdter Landstr. 189/D, D-40549 Dusseldrof, Germany.
Ikyume T.T., Oni A.O., Yusuf A.O., Sowande O.S. and Adegbehin S. (2020a). Rumen metabolites and microbiome of semi-intensively managed West African Dwarf goats supplemented concentrate diet of varying levels of sodium humate. Egyptian J. Vet. Sci. 51(2), 263-270.
Ikyume T.T., Sowande O.S., Yusuf A.O., Oni A.O., Dele P.A. and Ibrahim O.T. (2020b). In vitro gas production, methane production and fermentation kinetics of concentrate diet containing incremental levels of sodium humate. Agric. Conspec. Sci. 85(2), 183-189.
Ipek H., Avci M., Iriadam M., Kaplan O. and Denek N. (2008). Effects of humic acid on some hematological parameters, total antioxidant capacity and laying performance in Japanese quails. Arch. Geflugelkd. 72, 56-60.
Islam K.M.S., Schuhmacher A. and Grop J.M. (2005). Humic acid substances in animal agriculture. Pakistan J. Nutr. 4, 126-134.
Janknegt P.J., Rijstenbil J.W., Van de Poll W.H., Gechev T.S. and Buma A.G. (2007). A comparison of quantitative and qualitative superoxide dismutase assays for application to low temperature microalgae. J. Photochem. Photobiol. 87(3), 218-226.
Ji F., Mcglone J.J. and Kim S.W. (2006). Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission. J.Anim. Sci. 84(9), 2482-2490.
Kocabagli N., Alp M., Acar N. and Kahraman R. (2002). The effects of dietary humate supplementation on broiler growth and carcass yield. Poult. Sci. 81, 227-230.
Kuciel-Lewandowska J., Kasperczak M., Bogut B., Heider R., Laber W.T., Laber W. and Paprocka-Borowicz M. (2020). The impact of health resort treatment on the non enzymatic endogenous antioxidant system. Oxid. Med. Cell. Longev. 1, 1-9.
Kumar N., Rao T.K.S., Varghese A. and Rathor, V.S. (2013). Internal parasite management in grazing livestock. J. Parasit. Dis. 37, 151-157.
Larrauri J.A., Ruperez P., Borroto B. and Saura-Calixto F. (1996). Mango peels as a new tropical fiber: Preparation and char-acterization. LWT Food Sci. Technol. 29, 729-733.
Livestock Resource US. (2003). Field trials on Dairy Cattle. Enviromate Inc., 8571 Boat Club Road, Fort Worth, Texas. Available at: www.livestockrus.com.
Lubos E., Handy D.E. and Loscalzo J. (2009). Role of oxidative stress and nitric oxide in atherothrombosis. Front Biosci. 13, 5323-5344.
Machado V.S., Oikonomou G., Lima S.F., Bicalho M.L.S., Kacar C., Foditsch C., Felippe M.J., Gilbert R.O. and Bicalho R.C. (2014). The effect of injectable trace minerals (selenium, copper, zinc, and manganese) on peripheral blood leukocyte activity and serum superoxide dismutase activity of lactating Holstein cows. Vet. J. 200, 299-304.
Maier S.M., Gross J.K., Hamlin K.L., Maier J.L., Workman J.L., Kim-Howard X.R., Schoeb T.R. and Farris A.D. (2007). Proteinuria of nonautoimmune origin in wild-type FVB/NJ mice. Comp. Med. 57(3), 255-266.
Maurya P.K., Kumar P. and Chandra P. (2015). Biomarkers of oxidative stress in erythrocytes as a function of human age. World J. Methodol. 5(4), 216-222.
Maurya V.P., Sejian V., Kumar K., Singh G. and Naqvi S.M.K. (2012). Walking stress influence on livestock production. Pp. 75-95 in Environmental Stress and Amelioration in Livestock Production. V. Sejian, S.M.K. Naqvi, T.Ezeji, J. Lakritz and R. Lal, Eds. Springer-Verlag Berlin Heidelberg, Heidelberg, Germany.
McMurphy C.P., Duff G.C., Sanders S.R., Cuneo S.P. and Chýrase N.K. (2011). Effects of supplementing humates on rumen fermentation in Holstein steers. South African J. Anim. Sci. 41(2), 134-140.
Memic A., Kucukalic A., Oruc L., Huskic J., Burnazovic L. and Serdarevic R. (2012). Possible pathophysiological role of the relationship between levels of nitric oxide and bilirubin in patients with schizophrenia. European Psychiat. 27, 1274-1281.
Nedredal G.I., Amiot B.P., Nyberg P., Luebke-Wheeler J., Lillegard J.B., McKenzie T.J. and Nyberg S.L. (2009). Optimization of mass transfer for toxin removal and immunoprotection of hepatocytes in a bioartificial liver. Biotechnol. Bioeng. 104(5), 995-1005.
NRC. (1971). A guide to environmental research on animals. National Academy Press, Washington, DC., USA.
Parks C., Ferket P., Thomas L. and Grimes J. (1986). Growth performance and immunity of turkeys fed high and low crude protein diets supplemented with menefee humate. Poult. Sci. 75, 138-143.
Pasalic D., Marinkovic N. and Feher-Turkovic L. (2012). Uric acid as one of the important factors in multifactorial disorders – facts and controversies. Biochem. Med. 22, 63-75.
Pilarczyk K.B., Jankowiak D., Tomza-Marciniak A., Pilarczyk R., Sablik P., Drozd R., Tylkowska A. and Skolmowska M. (2012). Selenium concentration and glutathione peroxidase (GSH-Px) activity in serum of cows at different stages of lactation. Biol. Trace Elem. Res. 147, 91-96.
Písaříková B., Zralý Z. and Herzig I. (2009). The effect of dietary sodium humate supplementation on nutrient digestibility in growing pigs. Acta Vet. 79, 349-–353.
Popoola M.A., Bolarinwa M.O., Yahaya M.O., Adebisi G.L. and Saka A.A. (2014). Thermal comfort effects on physiologicaladaptations and growth performance of West African Dwarf goats raised in Nigeria. European Sci. J. 3, 275-281.
Scott D.T. (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 2984-2989.
Shin H.S., Lee H.R., Lee D.C., Shim J.Y., Cho K.H. and Suh S.Y. (2009). Uric acid as a prognostic factor for survival time: A prospective cohort study of terminally ill cancer patients. J. Pain Symptom Manage. 31(6), 493-501.
Soetan K.O., Olaiya C.O. and Oyewole O.E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. African J. Food Sci. 4, 200-222.
SPSS Inc. (2011). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc., USA.
Stepchenko L., Zhorina L. and Kravtsova L. (1991). The effect of sodium humate on metabolism and resistance in highly productive poultry. Nauchnye Doki Vyss Shkoly Biol. Nauki. 10, 90-95.
Suttle N.F. and Jones D.G. (1989). Recent developments in trace element metabolism and functions: Trace elements, disease resistance and immune responsiveness in ruminants. J. Nutr. 119, 1055-1061.
Teama F.E.I. (2018). Evaluation of some oxidative-stress and antioxidant markers in goats during estrous cycle under Egyptian environmental conditions. Rev. Bras. Zootec. 47, 1-8.
Terry S.A., Ribeiro G., Gruninger R.J., Hunerberg M., Ping S., Chaves A.V., Burlet J., Beauchemin K.A. and McAllister T.A. (2018). Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers. J. Anim. Sci. 96(9), 1-15.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Weber T.E., van Sambeek D.M., Gabler N.K., Kerr B.J., Moreland S., Johal S. and Edmonds M.S. (2014). Effects of dietary humic and butyric acid on growth performance and and response to lipopolysaccharide in young pigs. J. Anim. Sci. 92, 4172-4179.
Whidden M.A., McClung J.M., Falk D.J., Hudson M.B., Smuder A.J., Nelson W.B. and Powers S.K. (2009). Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. J. Appl. Physiol. 106(2), 385-394.
Willis K. (2015). An investigation of the effects of fulvic and humic acids on the absorption of selected drugs, vitamins and minerals using the everted mouse gut mode. MS Thesis. University of Pretoria, South Africa.
Yusuf A.O., Mlambo O., Sowande O.S. and Solomon R. (2017). Oxidative stress biomarkers in West African Dwarf goats reared under intensive and semi-intensive production systems. South African J. Anim. Sci. 47(3), 281-289.
Zeng C.L., Liu L., Wang B.R., Wu X.M. and Zhou Y. (2011). Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Biologia Plant. 55, 345-348.
Zielinski J., Pogorski T., Domaszewska K., Kusy K. and Michalak E. (2008). Differences in the antioxidant potential between the preparatory and competitive period in sprinters of the polish national team. Sports Med. 4(6), 213-223.