Intake, Digestibility, and Rumen Metabolism of Feedlot Lambs Supplemented either Monensin or Increasing Doses of Copaiba (Copaifera spp.) Essential oil
Subject Areas : CamelE.R. Oliveira 1 , F.S.S. Abreu 2 , A.M.A. Gabriel 3 , O.F.C. Marques 4 , J.T. Silva 5 , N.F. Neves 6 , H.F. Durães 7 , E.R.S. Gandra 8 , J.R. Gandra 9
1 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
2 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
3 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
4 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
5 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
6 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
7 - Department of Agricultural Science, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Dourados, Brazil
8 - Instituto de Estudos do Trópico Úmido, Universidade Federal do Sul e Sudeste do Pará, Marabá-PA, Brazil
9 - Rua Agua Azul n99
Keywords: Essential oil, antibiotic-free, cleaner production, feedlot lambs,
Abstract :
This trial aimed to evaluate increasing levels of copaiba oil on dry matter intake and digestibility, rumen fermentation, microbial protein synthesis, and thermal regulation in lambs. Ten lambs (32.4±2.86 kg body weight and 6.1±0.4 months of age) were assigned to two concurrent 5 × 5 latin square design trials, in which the following treatments were randomly distributed to lambs: control (CON), a basal diet with no feed additives; basal diet plus monensin (MON, 25 mg/ kg dry matter (DM)); and the basal diet pluscopaiba oil (CO), added at 0.5, 1.0, and 1.5 g/kg DM. The supplementation of copaiba oil (CO) did not influence the intake and digestibility of dry matter and nutrients. A quadratic effect was observed for the concentrations of propionate for lambs supplemented with CO. Lambs fed 1.0 g/kg DM of CO had a higher concentration of purine derivatives and microbial nitrogen and protein compared to lambs fed the ionophore. Copaiba oil (CO) positively influenced rumen fermentation and microbial protein synthesis, without altering dry matter consumption and digestibility. From these results, we suggest the use of 1.0 g/kg DM in growing lambs’ diets.
Abeer M.E.E., Ahlam R.A. and Marwa H.E.G. (2019). Impact of anise, clove, and thyme essential oils as feed supplements on the productive performance and digestion of Barki ewes. Australian J. Basic Appl. Sci. 13, 1-13.
AOAC. (2000). Official Methods of Analysis. 17th Ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.
Araki H.M.C., Gandra J.R., Oliveira E.R., Takiya C.S., Goes R.H.T., Rodrigues G.C., Gandra E.R.S., Lemos T.P., Damiani J. and Batista J.D.O. (2018). Effects of chitosan and whole raw soybeans on feeding behavior and heat losses of Jersey heifers. Iranian J. Appl. Anim. Res. 8, 397-405.
Broderick G.A. and Kang J.H. (1980). Automated simultâneos determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63, 64-75.
Calsamiglia S., Busque T.M. and Cardozo P.W. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 90, 2580-2595.
Calsamiglia S., Castillejos L. and Busquet M. (2006). Alternatives to antimicrobial growth promoters in cattle. Pp. 129-167 in Recent Advances in Animal Nutrition. P.C. Garnsworthy and J. Wiseman, Eds. Nottingham University Press, Nottingham, United Kingdom.
Castillejos L., Calsamiglia S. and Ferret A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J. Dairy Sci. 89, 2649-2658.
Castillejos L., Calsamiglia S., Ferret A. and Losa R. (2005). Effects of a specific blend of essential oil compounds and type of diet on rumen microbial fermentation and nutrient flow from a continuous culture system. Anim. Feed Sci. Technol. 119, 29-41.
Castillejos L., Calsamiglia S., Martín-Tereso J. and Ter Wijlen H. (2008). In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim. Feed Sci. Technol. 145, 259-270.
Chaves A.V., Stanford K., Gibson L.L., McAllister T.A. and Benchaar C. (2008). Effects of carvacrol and cinnamaldehyde on intake, rumen fermentation, growth performance, and carcass characteristics of growing lambs. Anim. Feed Sci. Technol. 145, 396-408.
Chen X.B. and Gomes M.J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of Technical Details. International Feed Research Unit, Rowett Research Institute, Bucksburnd, Aberdeen, Scotland.
Dehority B.A. (1977). Classification and Morphology of Rumen Protozoa. Agricultural Research and Development Center, Wooster, Ohio, USA.
Erwin E.S., Marco G.J. and Emery E.M. (1961). Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44, 1768-1771.
Evans J.D. and Martin S.A. (2000). Effects of thymol on ruminal microorganisms. Curr. Microbiol. 41, 336-340.
Franzoli R. and Dehority B.O. (2010). The role of pH on the survival of rumen protozoa in steers. Rev. Bras. Zootec. 39, 2262-2267.
Fujihara T., Orskov E.R., Reeds P.J. and Kyle D.J. (1987). The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. J. Agric. Sci. 109, 7-12.
Geraci J.I., Garciarena A.D., Gagliostro G.A., Beauchemin K.A. and Colombatto D. (2012). Plant extracts containing cinnamaldehyde, eugenol and capsicum oleoresin added to feedlot cattle diets: ruminal environment, short term intake pattern and animal performance. Anim. Feed Sci. Technol. 176, 123- 130.
Getachew G., Makkar H.P.S. and Becker K. (2002). Tropical browses: Contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 139, 341-352.
Gomes R.A., Busato K.C., Ladeira M.M., Johnson K.A., Galvão M.C., Rodrigues A.C., Lourençoni D. and Chizzotti M.L. (2016). Technical note: Relationship between infrared ther-mography and heat production in young bulls. J. Anim. Sci. 94, 1105-1109.
Lambert R.J.W., Skandamis P.N., Coote P.J. and Nychas G.J.E. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91, 453-462.
Martello L.S., Savastano Jr H., Silva S.L. and Balieiro J.C.C. (2009). Alternative body sites for heat stress measurement in milking cows under tropical conditions and their relationship to thermal discomfort of animals. Int. J. Biometeorol. 54, 647-652.
Martins A.S., Prado I.N., Zeoula L.M., Branco A.F. and Nascimento W.G. (2000). Digestibilidade aparente de dietas contendo milho ou casca de mandioca como fonte energética e farelo de algodão ou levedura como fonte protéica em novilhas. Rev. Bras. Zootec. 29, 269-277.
McEwan N.R., Graham R.C., Wallace R.J., Losa R., Williams P. and Newbold C.J. (2002). Effect of essential oils on protein digestion in the rumen. Reprod. Nutr. Dev. 42(1), 65-66.
Morsy T.A., Kholif S.M., Matloup O.H., Abo M.M. and El-shafie M.H. (2012). Impact of anise, clove and juniper oils as feed additives on the productive performance of lactating goats. Int. J. Dairy Sci. 7, 20-28.
Moura L.V., Oliveira E.R., Fernandes A.R.M., Gabriel A.M.A., Silva L.H.X., Takiya C.S., Cônsolo N.R.B., Rodrigues G.C.G., Lemos T. and Gandra J.R. (2018). Feed efficiency and carcass traits of feedlot lambs supplemented either monensin or increasing doses of copaiba (Copaifera spp.) essential oil. Anim. Feed Sci. Technol. 232, 110-118.
Nazzaro F., Fratianni F. and Martino L. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 6, 1451-1474.
Newbold C.J., McIntosh F.M., Williams P., Losa R. and Wallace R.J. (2004). Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 114, 105-112.
NRC. (2007). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, D.C., USA.
Patra A.K. (2011). Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J. Anim. Vet. Adv. 6, 416-428.
Ribeiro A.D.B., Junior F., Polizei D.M., Miszura A.A., Gobato L.G.M., Barroso J.P.R., Susin I. and Pires A.V. (2019). Thyme essential oil for sheep: Effect on rumen fermentation, nutrient digestibility, nitrogen metabolism, and growth. Arq. Bras. Med. Vet. Zootec. 71, 2065-2074.
Russell L.J.B. and Strobe L.H.J. (1988). Effects of additives on in vitro ruminal fermentation: a comparison of monensin and bacitracin, another gram-positive antibiotic. J. Anim. Sci. 66, 552-558.
Santos A.O., Ueda-Nakamura T., Dias Filho B.P., Veiga Junior V.F., Pinto A.C. and Nakamura C.V. (2008). Antimicrobial activity of Brazilian copaíba oils obtained from different species of the Copaifera genus. Mem. Int. Oswaldo Cruz. 103, 277-281.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Simões C.M.O. and Spitzer V. (2000). Óleos voláteis. Pp. 387-416 in Farmacognosia: da Planta ao Medicamento. C.M.O. Simões, E.P. Schenkel, G. Gosmann, J.C.P. de Mello, L.A. Mentz and P.R. Petrovick, Eds. Porto Alegre, Florianópolis, Brezil.
Vakili A.R., Khorram I.B. and Mesgaran M.D. (2013). The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Australasian J. Anim. Sci. 26, 935-944.
Van Brecht A., Hens H., Lemaire J.L., Aerts J.M., Degraeve P. and Berckmans D. (2005). Quantification of the heat exchange of chicken eggs. Poult. Sci. 84, 353-361.
Veiga Junior V.F. and Pinto A.C. (2002). O gênero Copaifera L. Química Nova. 25(2), 27386-27394.
Verbic J., Chen X.B. and Macleod N.A. (1990). Excretion of purine derivatives by ruminants. Effect of microbial nucleic acid infusion on purine derivative excretion by steers. J. Agric. Sci. 114, 243-248.
Yahav S., Straschnow A., Luger D., Shinder D., Tanny J. and Cohen S. (2004). Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poult. Sci. 83, 253-258.
Yang C.M. and Russell J.B. (1993). The effect of monensin supplementation on ruminal ammonia accumulation in vitro and the numbers of amino acid-fermenting bacteria. J. Anim. Sci. 71, 3470-3476.
Young G.B.E. and Conway C.F. (1942). On the estimation of allantoin by the Rimini-Schryver reaction. J. Biol. Chem. 142, 839-853.