An Alternative Robust Model for in situ Degradation Studies “Korkmaz-Uckardes”
Subject Areas : Camel
1 - Department of Mathematics, Ordu University, Ordu, 52200, Turkey
2 - Department of Biostatistics, Adıyaman University, Adıyaman, 02040, Turkey
Keywords: mathematical model, in Situ degradation, Korkmaz-Uckardes model,
Abstract :
The first purpose of this study is to present an alternative robust model in order to describe ruminal degradation kinetics of forages and to minimize the fitting problems.For this purpose, the Korkmaz-Uckardes (KU) model, which has a logarithmic structure, was developed. The second purpose of this study is to estimate, by using the Korkmaz-Uckardes (KU)model, the parameters tp (the time to produce p% of partial dry matter disappearance in rumen) and Rtp (the rate of the partial dry matter disappearance in rumen at the time tp). These parameters will provide more useful data to compare feedstuffs in in situ degradation studies. The third purpose is to evaluate the performance of the Korkmaz-Uckardes (KU)model. Statistical criteria used to evaluate the performance of a model were analysis of residuals (Runs and Durbin Watson test) and goodness-of-fit test (residual mean square, coefficient of determination and accuracy factor). The analysis of residuals of the Korkmaz-Uckardes (KU)model was found to be non significant (P>0.05). The residuals are normally distributed. According to the goodness-of-fit test, the Korkmaz-Uckardes (KU) model applied to all data showed a very good fit (residual mean square (RMS)=15.854, R2=0.9853 and accuracy factor (AF)=1.0387). According to the Pearson's correlation analysis, a significant relationship (r2=0.969) was found between observed and predicted values (P<0.001). The results indicate that the Korkmaz-Uckardes (KU) model can be used as an alternative model for describing and interpreting in situ dry matter degradation from natural feedstuffs.
Axelsson J. (1939). Die stimulierende wirkung des proteins im tierfutter. Tierernahrung. 11, 162-175.
Bibby J. and Toutenberg H. (1977). Prediction and Improvement Estimation in Linear Models. John Wiley and Sons, London, UK.
Blümmel M. and Orskov E.R. (1993). Comparision of an in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim. Feed Sci. Technol. 40, 109-119.
Bueno I.C.S., Filho S.L.S.C., Godoy P.B. and Abdalla A.L. (2010). Comparison of in situ and in vitro dry matter rumen degradability of three distinct quality hays in sheep. Trop. Subtrop. Agroeco. 12, 321-332.
Calabro S., Lopez S., Piccolo V., Dijkstrae J., Dhanoa M.S. and France J. (2005). Comparative analysis of gas production profiles obtained with buffalo and sheep ruminal fluid as the source of inoculum. Anim. Feed Sci. Technol. 124, 51-65.
Canbola O., Kamalak A., Efe E., Sahin M. and Ozkan C.O. (2005). Effect of heat treatment on in situ rumen degradability and in vitro gas production of full-fat soyabeans and soyabean meal. South African J. Anim. Sci. 3, 186-194.
Dhanoa M.S., Lopez S., Dijkstra J., Davies D.R., Sanderson R., Williams B.A., Sileshi Z. and France J. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: comparison of models. Br. J. Nutr. 83, 131-142.
Draper N.R. and Smith H. (1981). Applied Regression Analysis. Wiley, New York, USA.
France J., Dhanoa M.S., Theodorou M.K., Lister S.J., Davies D.R. and Isaac D. (1993). A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol. 163, 99-111.
France J., Dijkstrae J., Dhanoa M.S., Lopez S. and Bannink A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. Br. J. Nutr. 83, 143-150.
France J., Lopez S., Kebreab E., Bannink A., Dhanoa M.S. and Dijkstra J. (2005). A general compartmental model for interpreting gas production profiles. Anim. Feed Sci. Technol. 123, 473-485.
Groot J.C.J., Cone J.W., Williams B.A., Debersaques F.M.A. and Lantinga E.A. (1996). Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64, 77-89.
Kamalak A., Canbolat O., Ozay O. and Aktas S. (2004). Nutritive value of oak (Quercus) leaves. Small Rumin. Res. 53, 161-165.
Kamalak A., Canbolat O., Gurbuz Y., Ozay O. and Ozkose E. (2005). Chemical composition and its relationship to in vitro gas production of several tanin containing trees and shrub leaves. Asian-australas J. Anim. 2, 203-208.
Kamalak A., Guven I., Kaplan M., Boga M., Atalay A.I. and Ozkan C.O. (2012). Potential nutritive value of Honey Locust (Gleditsia triacanthos) pods from different growing sites for ruminants. J. Agric. Sci. Technol. 14, 115-126.
Korkmaz M., Uckades F. and Kaygisiz A. (2011). Comparision of wood, gaines, parabolic, hayashi, dhanno and polynomial models for lactation season curve of Simmental cows. J. Anim. Plan. Sci. 3, 448-458.
Lopez S., France J., Dhanoa S., M., Mould F. and Dijkstra J. (1999). Comparison of mathematical models to describe disapperance curves obtained using the polyster bag technique for incubating feeds in the rumen. J. Anim. Sci. 77, 1875-1888.
Lopez S., Prieto M., Dijkstra J., Dhanoa M.S. and France J. (2004). Statistical evaluation of mathematical models for microbial growth. Int. J. Food Microbiol. 96, 289-300.
Mehrez A.Z. and Orskov E.R. (1977). A Study of the artificial fibre bag technique for determining the digestibility of feeds in the rumen. J. Agric. Sci. 88, 645-650.
Motulsky H.J. and Ransnas L.A. (1987). Fitting curves to data using nonlinear regression: a practical and nonmathematical review. Faseb J. 1, 365-374.
Pineiro G., Perelman S., Guerschman J.P. and Paruelo J.M. (2008). How to evaluate models: observed vs. predicted or predicted vs. observed? Ecol. Model. 216, 316-322.
Parissi M.S., Papachristou T.G. and Nastis A.S. (2005). Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Anim. Feed Sci. Technol. 124(1), 119-128.
Sahin M., Uckardes F., Canbolat O., Kamalak A. and Atalay A.I. (2011). Estimation of partial gas production times of some feedstuffs used in ruminant nutrition, Kafkas Univ. Vet. Fak. Derg. 17, 731-734.
Sallam S.M.A., Nasser M.E.A., El-Waziry A.M., Bueno I.C.S. and Abdalla A.L. (2007). Use of in vitro rumen gas production technique to evaluate some ruminant feedstuffs. J. Appl. Sci. Res. 3, 34-41.
SAS Institute. (1999). SAS®/STAT Software, Release 8. SAS Institute, Inc., Cary, NC.
Schofield P., Pitt R.E. and Pell A.N. (1994). Kinetics of fibre digestion from in vitro gas production. J. Anim. Sci. 72, 2980-2991.
Theodorou M.K., Willams B.A., Dhanoa M.S., Mc Allan A.B. and France J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185-197.
Wang M., Tang S.X. and Tan S.X. (2011). Modeling in vitro gas production kinetics: derivation of logistic-exponential (LE) equations and comparision of models. Anim. Feed Sci. Technol. 165, 137-150.
Zwitering M.H., Jongenburger I., Rombouts F.M. and Van’t Riet K. (1990). Modelling of the bacterial growth curve. Appl. Environ. Microb. 56(6),1875-1991.