Recent Nutritional Advances to Mitigate Methane Emission in Cattle: A Review
Subject Areas : CamelA. Hadipour 1 , ا. محیط 2 , H. Darmani Kuhi 3 , F. Hashemzadeh 4
1 - Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Iran
2 - گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران
3 - Department of Animal Science, Faculty of Agricultural Science, University of Guilan, Rasht, Iran
4 - Department of Animal Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
Keywords: emission, methane, beef cattle, Greenhouse gas,
Abstract :
Climate change and preventative regulations on greenhouse gas (GHG) emissions have forced countries to focus on reducing the emission of GHG by the causative factors. The rapid increase in the world population, the culture of urbanization and enhanced income of human societies over the past few decades have raised concerns about more effective and sustainable ways of the food supply with minimum adverse effects on the environment. The livestock sector is very important in terms of meat, milk, and eggs, that all of them are important and high-quality constituents of human nutrition. Despite the value of these products, livestock and poultry have not ever been without a detrimental effect on the environment, and the challenge for researchers and scientists in this field has tried to minimize these adverse effects. GHGs such as CH4, CO2 and N2O, and nitrogen and phosphorus disposal are some of them, which affect both the livestock and poultry sector. About 14.5% of total global anthropogenic GHG per year has been attributed to the domestic animal production sector, which is equal to 7.1 gigatonnes of the annual CO2 equivalent (CO2equ) of GHG. Approximately, 44%, 29% and 27% of the sector’s emissions are CH4, N2O, and CO2, respectively. Methane production and N2O emission in ruminants are not only effective on the environment but also on animal performance, so the use of multipurpose strategies to reduce the emission of these compounds can improve livestock performance in addition to positive environmental impacts. Since more than 54% of the annual production of CO2equ has been accounted for beef cattle, using different mitigation strategies in this section is more essential. The present review aimed to summarize the current knowledge and findings of the influencing factors on GHG emissions from beef cattle.
Abdelrahman S.M., Li R.H., Elnahr M., Farouk M.H. and Lou Y. (2019). Effects of different levels of eucalyptus oil on methane production under in vitro conditions. Polish J. Environ. Stud. 28(3), 1031-1042.
Aboagye I.A. and Beauchemin K.A. (2019). Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals. 9(11), 856-874.
Aboagye I.A., Oba M., Koenig K.M., Zhao G.Y. and Beauchemin, K.A. (2019). Use of gallic acid and hydrolyzable tannins to reduce methane emission and nitrogen excretion in beef cattle fed a diet containing alfalfa silage. J. Anim. Sci. 97(5), 2230-2244.
Alemu A.W., Romero-Pérez A., Araujo R.C. and Beauchemin K.A. (2019). Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals. 9(1), 21-38.
Anele U.Y., Yang W.Z., McGinn P.J., Tibbetts S.M. and McAllister T.A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian J. Anim. Sci. 96(3), 354-363.
Appuhamy J.R.N., Strathe A.B., Jayasundara S., Wagner-Riddle C., Dijkstra J., France J. and Kebreab E. (2013). Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 96(8), 5161-5173.
Asem-Hiablie S., Battagliese T., Stackhouse-Lawson K.R. and Rotz C.A. (2019). A life cycle assessment of the environmental impacts of a beef system in the USA. Int. J. Life Cycle Assess. 24(3), 441-455.
Aviles-Nieto J., Marquez-Mota C., Romero-Pérez A., Talamantes-Gómez J., Castillo-Gallegos E., Jarillo J. and Corona L. (2019). PSXIV-12 effect of the addition of canola oil on digestibility, rumen fermentation and methane emissions in beef cattle in the Mexican tropic. J. Anim. Sci. 97(3), 440-441.
Barwick S.A., Henzell A.L., Herd R.M., Walmsley B.J. and Arthur P.F. (2019). Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection. Genet. Sel. Evol. 51(1), 18-26.
Bayat A.R., Tapio I., Vilkki J., Shingfield K.J. and Leskinen H. (2018). Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci. 101(2), 1136-1151.
Beauchemin K.A. and McGinn S.M. (2005). Methane emissions from feedlot cattle fed barley or corn diets. J. Anim. Sci. 83(3), 653-661.
Beauchemin K.A., McGinn S.M. and Petit H.V. (2007). Methane abatement strategies for cattle: Lipid supplementation of diets. Canadian J. Anim. Sci. 87(3), 431-440.
Beck M.R., Thompson L.R., White J.E., Williams G.D., Place S.E., Moffet C.A., Gunter S.A. and Reuter R.R. (2018). Whole cottonseed supplementation improves performance and reduces methane emission intensity of grazing beef steers. Prof. Anim. Sci. 34(4), 339-345.
Beck M.R., Thompson L.R., Williams G.D., Place S.E., Gunter S.A. and Reuter R.R. (2019). Fat supplements differing in physical form improve performance but divergently influence methane emissions of grazing beef cattle. Anim. Feed Sci. Technol. 254, 114210.
Bodas R., Prieto N., García-González R., Andrés S., Giráldez F.J. and López S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 176(1), 78-93.
Bohutskyi P., Betenbaugh M.J. and Bouwer E.J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour. Technol. 155, 366-372.
Brask M., Lund P., Weisbjerg M.R., Hellwing A.L.F., Poulsen M., Larsen M.K. and Hvelplund T. (2013). Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows. J. Dairy Sci. 96(4), 2356-2365.
Bryszak M., Szumacher-Strabel M., El-Sherbiny M., Stochmal A., Oleszek W., Roj E., Patra A.K. and Cieslak A. (2019). Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows. J. Dairy Sci. 102(2), 1257-1273.
Burney J.A., Davis S.J. and Lobell D.B. (2010). Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. 107(26), 12052-12057.
Candyrine S.C.L., Mahadzir M.F., Garba S., Jahromi M.F., Ebrahimi M., Goh Y.M., Samsudin A.A., Sazili A.Q., Li Chen W., Ganesh S., Ronimus R., Muetzel S. and Liang J.B. (2018). Effects of naturally-produced lovastatin on feed digestibility, rumen fermentation, microbiota and methane emissions in goats over a 12-week treatment period. PLoS One. 13(7), e0199840.
Cassidy E.S., West P.C., Gerber J.S. and Foley J.A. (2013). Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 8(3), 034015.
Cieslak A., Szumacher-Strabel M., Stochmal A. and Oleszek W. (2013). Plant components with specific activities against rumen methanogens. Animal. 7(2), 253-265.
Cieslak A., Zmora P., Stochmal A., Pecio L., Oleszek W., Pers-Kamczyc E., Szczechowiak J., Nowak A. and Szumacher-Strabel M. (2014). Rumen antimethanogenic effect of Saponaria officinalis phytochemicals in vitro. J. Agric. Sci. 152(6), 981-993.
Cosgrove G.P., Muetzel S., Skipp R.A. and Mace W.J. (2012). Effects of endophytic and saprophytic fungi on in vitro methanogenesis. New Zealand J. Agric. Res. 55(3), 293-307.
Costa K.C. and Leigh J.A. (2014). Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29, 70-75.
Cottle D.J., Nolan J.V. and Wiedemann S.G. (2011). Ruminant enteric methane mitigation: A review. Anim. Prod. Sci. 51(6), 491-514.
D’Aurea A.P., Fernandes L.B., Oliveira A.P., Ferreira L.E., Lima M.M., Limede A.C. and Silva M.F. (2019). Natural additives can replace the conventional growth promoters in cattle feedlot diet. EAAP Sci. Ser. 138, 175-176.
De Haas Y., Garnsworthy P.C., Kuhla B., Negussie E., Pszczola M., Wall E. and Lassen J. (2016). Genetic control of greenhouse gas emissions. Adv. Anim. Biosci. 7(2), 196-199.
De la Fuente G., Yañez-Ruiz D.R., Seradj A.R., Balcells J. and Belanche A. (2019). Methanogenesis in animals with foregut and hindgut fermentation: A review. Anim. Prod. Sci. 59(12), 2109-2122.
Demirel B. and Scherer P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 7(2), 173-190.
Doyle N., Mbandlwa P., Attwood G.T., Li Y., Ross P., Stanton C. and Leahy S.C. (2019). Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Front. Microbiol. 10, 2207-2215.
Duin E.C., Wagner T., Shima S., Prakash D., Cronin B., Yáñez-Ruiz D.R., Duval S., Rumbeli R., Stemmler R.T., Thauer R.K. and Kindermann M. (2016). Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl Acad. Sci. 113(22), 6172-6177.
Eger M., Graz M., Riede S. and Breves G. (2018). Application of mootral TM reduces methane production by altering the archaea community in the rumen simulation technique. Front. Microbiol. 9, 2094-2109.
Embaby M.G., Günal M. and AbuGhazaleh A. (2019). Effect of Unconventional oils on in vitro rumen methane production and fermentation. Cie. Invest. Agr. 46(3), 276-285.
Environmental Protection Agency (EPA). (2018). Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2016. Available at: https://www.epa.gov/sites/production/files.
Eugène M., Massé D., Chiquette J. and Benchaar C. (2008). Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Canadian J. Anim. Sci. 88(2), 331-337.
FAO. (2018). Global Livestock Environmental Assessment Model. Rome, Italy.
FAO and GDP. (2018). Climate Change and the Global Dairy Cattle Sector – The Role of the Dairy Sector in a Low-Carbon Future. Rome, Italy.
FAOSTAT. (2020). Database of the Food and Agricultural Organization (FAO) of the United Nations. Availabe at: http://www.fao.org/faostat/en/#home.
Fennessy P.F., Byrne T.J., Proctor L.E. and Amer P.R. (2019). The potential impact of breeding strategies to reduce methane output from beef cattle. Anim. Prod. Sci. 59(9), 1598-1610.
Fiorentini G., Carvalho I.P.C., Messana J.D., Castagnino P.S., Berndt A., Canesin R.C., Frighetto R.T.S. and Berchielli T.T. (2014). Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. J. Anim. Sci. 92(4), 1613-1620.
Flachowsky G. and Brade W. (2007). Potenziale zur reduzierung der mmethan-emissionen bei Wiederkäuern. Züchtungskunde. 79(6), 417-465.
Flachowsky G. and Hachenberg S. (2009). CO2-footprints for food of animal origin–present stage and open questions. J. Verbrauch. Lebensm. 4(2), 190-198.
Flachowsky G. and Kamphues J. (2012). Carbon footprints for food of animal origin: What are the most preferable criteria to measure animal yields? Animals. 2(2), 108-126.
Flachowsky G., Meyer U. and Südekum K.H. (2018). Invited review: Resource inputs and land, water and carbon footprints from the production of edible protein of animal origin. Arch. Tierz. 61(1), 17-27.
Galagan J.E., Nusbaum C., Roy A., Endrizzi M.G., Macdonald P., FitzHugh W., Calvo S., Engels R., Smirnov S., Atnoor D. and Brown A. (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12(4), 532-542.
Garnsworthy P.C., Difford G.F., Bell M.J., Bayat A.R., Huhtanen P., Kuhla B., Lassen J., Peiren N., Pszczola M., Sorg D. and Visker M.H. (2019). Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals. 9(10), 837-851.
Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A. and Tempio G. (2013). Tackling climate change through livestock. Pp. 51-57 in A Global Assessment of Emissions and Mitigation Opportunities, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Gleason C.B. and White R.R. (2019). Beef species-ruminant nutrition cactus beef symposium: A role for beef cattle in sustainable US food production. J. Anim. Sci. 97(9), 4010-4020.
Grainger C., Clarke T., McGinn S.M., Auldist M.J., Beauchemin K.A., Hannah M.C., Waghorn G.C., Clark H. and Eckard R.J. (2007). Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J. Dairy Sci. 90(6), 2755-2766.
Granja-Salcedo Y.T., Fernandes R.M., Araujo R.C.D., Kishi L.T., Berchielli T.T., Resende F.D.D., Berndt A. and Siqueira G.R. (2019). Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol. 10, 614-625.
Gupta S., Mohini M., Malla B.A., Mondal G. and Pandita S. (2019). Effects of monensin feeding on performance, nutrient utilisation and enteric methane production in growing buffalo heifers. Trop. Anim. Health Prod. 51(4), 859-866.
Haque M.N. (2018). Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60(1), 15-22.
Hedderich R. and Whitman W.B. (2013). Physiology and biochemistry of the methane-producing archaea. Pp. 635-662 in The Prokaryotes, E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt and F. Thompson, Eds. Springer Berlin Heidelberg, Germany.
Hemphill C.N., Wickersham T.A., Sawyer J.E., Brown-Brandl T.M., Freetly H.C. and Hales K.E. (2018). Effects of feeding monensin to bred heifers fed in a drylot on nutrient and energy balance. J. Anim. Sci. 96(3), 1171-1180.
Hristov A.N., Oh J., Firkins J.L., Dijkstra J., Kebreab E., Waghorn G., Makkar H.P.S., Adesogan A.T., Yang W., Lee C. and Gerber P.J. (2013). Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91(11), 5045-5069.
Hristov A.N., Oh J., Giallongo F., Frederick T.W., Harper M.T., Weeks H.L., Branco A.F., Moate P.J., Deighton M.H., Williams S.R.O. and Kindermann M. (2015). An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. 112(34), 10663-10668.
Huhtanen P. and Huuskonen A. (2020). Modelling effects of carcass weight, dietary concentrate and protein levels on the CH4 emission, N and P excretion of dairy bulls. Livest. Sci. 232, 103896-103906.
Huhtanen P., Ramin M. and Hristov A.N. (2019). Enteric methane emission can be reliably measured by the Green Feed monitoring unit. Livest. Sci. 222, 31-40.
Ipharraguerre I.R. and Clark J.H. (2003). Usefulness of ionophores for lactating dairy cows: A review. Anim. Feed Sci. Technol. 106(1), 39-57.
Jahromi F.M., Liang J.B., Ho Y.W., Mohamad R., Goh Y.M., Shokryazdan P. and Chin J. (2013). Lovastatin in Aspergillus terreus: Fermented rice straw extracts interferes with methane production and gene expression in Methanobrevibacter smithii. Biomed. Res. Int. 2013, 604721-604732.
Jeyanathan J., Martin C. and Morgavi D.P. (2016). Screening of bacterial direct-fed microbials for their antimethanogenic potential in vitro and assessment of their effect on ruminal fermentation and microbial profiles in sheep. J. Anim. Sci. 94(2), 739-750.
Jeyanathan J., Martin C., Eugène M., Ferlay A., Popova M. and Morgavi D.P. (2019). Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows. J. Anim. Sci. Biotechnol. 10(1), 41-49.
Johnson J.R., Carstens G.E., Krueger W.K., Lancaster P.A., Brown E.G., Tedeschi L.O., Anderson R.C., Johnson K.A. and Brosh A. (2019). Associations between residual feed intake and apparent nutrient digestibility, in vitro methane-producing activity, and volatile fatty acid concentrations in growing beef cattle. J. Anim. Sci. 97(8), 3550-3561.
Johnson K.A. and Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci. 73(8), 2483-2492.
Jonker A., Green P., Waghorn G., van der Weerden T., Pacheco D. and de Klein C. (2020). A meta-analysis comparing four measurement methods to determine the relationship between methane emissions and dry-matter intake in New Zealand dairy cattle. Anim. Prod. Sci. 60(1), 96-101.
Kholif A.E., Morsy T.A., Matloup O.H., Anele U.Y., Mohamed A.G. and El-Sayed A.B. (2017). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J. Agric. Sci. 155(3), 508-518.
Kim S.H., Lee C., Pechtl H.A., Hettick J.M., Campler M.R., Pairis-Garcia M.D., Beauchemin K.A., Celi P. and Duval S.M. (2019). Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet. J. Anim. Sci. 97(7), 2687-2699.
Knapp J.R., Laur G.L., Vadas P.A., Weiss W.P. and Tricarico J.M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97(6), 3231-3261.
Kozłowska M., Cieślak A., Jóźwik A., El Sherbiny M., Stochmal A., Oleszek W. and Szumacher Strabel M. (2020). The effect of total and individual alfalfa saponins on rumen methane production. J. Sci. Food Agric. 100(5), 1922-1930.
Lan W. and Yang C. (2019). Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 654, 1270-1283.
Lee C., Hristov A.N., Dell C.J., Feyereisen G.W., Kaye J. and Beegle D. (2012). Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure. J. Dairy Sci. 95(4), 1930-1941.
Lourenço M., Ramos-Morales E. and Wallace R.J. (2010). The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal. 4(7), 1008-1023.
Ma T., Chen D., Tu Y., Zhang N., Si B., Deng K. and Diao Q. (2016). Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes. J. Anim. Sci. Biotechnol. 7(1), 1-11.
Machado L., Magnusson M., Paul N.A., de Nys R. and Tomkins N. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One. 9(1), e85289.
McGinn S.M., Flesch T.K., Beauchemin K.A., Shreck A. and Kindermann M. (2019). Micrometeorological methods for measuring methane emission reduction at beef cattle feedlots: Evaluation of 3-nitrooxypropanol feed additive. J. Environ. Qual. 48(5), 1454-1461.
Mimouni M.F.Z.K., Khardli F.Z., Warad I., Ahmad M., Mubarak M.S., Sultana S. and Hadda T.B. (2014). Antimicrobial activity of naturally occurring antibiotics monensin, lasalocid and their metal complexes. J. Mater. Environ. Sci. 5(1), 207-214.
Miron T., Rabinkov A., Mirelman D., Wilchek M. and Weiner L. (2000). The mode of action of allicin: Its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim. Biophys. Acta. 1463(1), 20-30.
Mitloehner F. (2018). Livestock and climate change: Facts and fiction. Pp. 27-30 in The Welfare of Cattle. T. Engle, D.J. Klingborg and B.E. Rollin, Eds. CRC Press, Florida, US.
Moate P.J., Deighton M.H., Williams S.R.O., Pryce J.E., Hayes B. J., Jacobs J.L., Eckard R.J., Hannah M.C. and Wales W.J. (2016). Reducing the carbon footprint of Australian milk production by mitigation of enteric methane emissions. Anim. Prod. Sci. 56(7), 1017-1034.
Mohammed R., Zhou M., Koenig K.M., Beauchemin K.A. and Guan L.L. (2011). Evaluation of rumen methanogen diversity in cattle fed diets containing dry corn distillers grains and condensed tannins using PCR-DGGE and qRT-PCR analyses. Anim. Feed Sci. Technol. 166, 122-131.
Morgavi D.P., Martin C. and Boudra H. (2013). Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo. J. Anim. Sci. 91(2), 848-860.
Narvaez N., Wang Y. and McAllister T. (2013). Effects of extracts of Humulus lupulus (hops) and Yucca schidigera applied alone or in combination with monensin on rumen fermentation and microbial populations in vitro. J. Sci. Food Agric. 93(10), 2517-2522.
Njidda A.A. and Nasiru A. (2010). In vitro gas production and dry matter digestibility of tannin-containing forages of semi-arid region of north-eastern Nigeria. Pakistan J. Nutr. 9(1), 60-66.
Nolan J.V., Hegarty R.S., Hegarty J., Godwin I.R. and Woodgate R. (2010). Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Anim. Prod. Sci. 50(8), 801-806.
Opio C., Gerber P., Mottet A., Falcucci A., Tempio G., MacLeod M., Vellinga T., Henderson B. and Steinfeld H. (2013). Greenhouse gas emissions from ruminant supply chains. Pp. 101-107 in A Global Life Cycle Assessment, Food Agriculture organization of the United Nations, Rome, Italy.
Ornaghi M., do Prado R., Oyama L., Huws S. and do Prado I. (2019). Investigating methane mitigation in beef cattle fed with natural additives. Access Microbiol. 1, 1-10.
Özkan Ş.Ö., Ahmadi B.V. and Stott A.W. (2018). Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway. Prev. Vet. Med. 150, 19-29.
Özkan Ş.O., Ahmadi B.V., Bonesmo H., Østerås O., Stott A. and Harstad O.M. (2015). Impact of animal health on greenhouse gas emissions. Adv. Anim.Biosci. 6(1), 24-25.
Pancini S., Cooke R.F., Brandão A.P., Dias N.W., Timlin C.L., Fontes P.L.P., Sales A.F.F., Wicks J.C., Murray A., Marques R.S., Pohler K.G. and Mercadante V.R.G. (2020). Supplementing a yeast-derived product to feedlot cattle consuming monensin: Impacts on performance, physiological responses, and carcass characteristics. Livest. Sci. 232, 103907-1039017.
Patra A.K. (2012). Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ. Monit. Assess. 184(4), 1929-1952.
Patra A.K. (2016). Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front. Vet. Sci. 3, 39-50.
Patra A.K. and Saxena J. (2009). Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie van Leeuwenhoek. 96(4), 363-375.
Patra A.K. and Yu Z. (2013a). Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Biores. Technol. 148, 352-360.
Patra A.K. and Yu Z. (2013b). Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques. J. Dairy Sci. 96(7), 4592-4600.
Pers-Kamczyc E., Zmora P., Cieślak A. and Szumacher-Strabel M. (2011). Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. J. Anim. Feed Sci. 20(3), 315-337.
Pisarčíková J., Váradyová Z., Mihaliková K. and Kišidayová S. (2016). Quantification of organic acids in ruminal in vitro batch culture fermentation supplemented with fumarate using a herb mix as a substrate. Canadian J. Anim. Sci. 96(1), 60-68.
Prins R.A., Van Nevel C.J. and Demeyer D.I. (1972). Pure culture studies of inhibitors for methanogenic bacteria. Antonie van Leeuwenhoek. 38(1), 281-287.
Rabiee A.R., Breinhild K., Scott W., Golder H.M., Block E. and Lean I.J. (2012). Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. J. Dairy Sci. 95(6), 3225-3247.
Ribeiro Pereira L.G., Machado F.S., Campos M.M., Guimaraes Júnior R., Tomich T.R., Reis L.G. and Coombs C. (2015). Enteric methane mitigation strategies in ruminants: A review. Rev. Colomb. Cienc. Pec. 28(2), 124-143.
Roj E., Dobrzynska-Inger A., Kostrzewa D., Kolodziejczyk K., Sojka M., Krol B., Miszczak A. and Markowski J. (2009). Extraction of berry seed oils with supercritical CO2. Przem. Chem. 88(12), 1325-1330.
Romero-Pérez A., Alemu A., Araujo R. and Beauchemin K. (2018). Effect of slow release nitrate and essential oil on animal performance and methane emissions from feedlot cattle fed high-grain finishing diets. J. Anim. Sci. 96(3), 409-409.
Romero-Perez A., Okine E.K., McGinn S.M., Guan L.L., Oba M., Duval S.M., Kindermann M. and Beauchemin K.A. (2014). The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J. Anim. Sci. 92(10), 4682-4693.
Roque B.M., Van Lingen H.J., Vrancken H. and Kebreab E. (2019). Effect of mootral—a garlic-and citrus-extract-based feed additive—on enteric methane emissions in feedlot cattle. Transl. Anim. Sci. 3(4), 1383-1388.
Rotz C.A., Asem-Hiablie S., Place S. and Thoma G. (2019). Environmental footprints of beef cattle production in the United States. Agric. Syst. 169, 1-13.
Rowntree J.E., Ryals R., DeLonge M.S., Teague W.R., Chiavegato M.B., Byck P., Wang T. and Xu S. (2016). Potential mitigation of midwest grass-finished beef production emissions with soil carbon sequestration in the United States of America. J. Food Agric. Soc. 4(3), 31-38.
Russell J.B. and Wallace R.J. (1997). Energy-yielding and energy-consuming reactions. Pp. 246-282 in The Rumen Microbial Ecosystem. P.N. Hobson and C.S. Stewart, Eds. Blackie Academic and Professional, London, United Kingdom.
Statistical Center of Iran. (2017). Statical Details of Animal Husbandry, in Persion. Available at: https://www.amar.org.ir.
Sucu E. (2019). Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Ann. Anim. Sci. 2019, 1-20.
Suybeng B., Charmley E., Gardiner C.P., Malau-Aduli B.S., and Malau-Aduli A.E. (2019). Methane emissions and the use of desmanthus in beef cattle production in Northern Australia. Animals. 9(8), 542-556.
Szumacher-Strabel M., Zmora P., Roj E., Stochmal A., Pers-Kamczyc E., Urbańczyk A., Oleszek W., Lechniak W. and Cieślak A. (2011). The potential of the wild dog rose (Rosa canina) to mitigate in vitro rumen methane production. J. Anim. Feed Sci. 20(2), 285-299.
Tamminga S., Bannink A., Dijkstra J. and Zom R.L.G. (2007). Feeding Strategies to Reduce Methane Loss in Cattle. Wageningen UR, Lelystad, the Netherlands.
Tsiplakou E., Abdullah M.A.M., Skliros D., Chatzikonstantinou M., Flemetakis E., Labrou N. and Zervas G. (2017). The effect of dietary Chlorella vulgaris supplementation on micro organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J. Anim. Physiol. Anim. Nutr. 101(2), 275-283.
Valli C. (2020). Mitigating enteric methane emission from livestock through farmer-friendly practices. Pp. 257-273 in A Global Climate Change and Environmental Policy, Springer, Singapore.
Van Kessel J.A.S. and Russell J.B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20(4), 205-210.
Vieco-Saiz N., Belguesmia Y., Raspoet R., Auclair E., Gancel F., Kempf I. and Drider D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 57-69.
Von Soosten D., Meyer U., Flachowsky G. and Dänicke S. (2020). Dairy Cow Health and Greenhouse Gas Emission Intensity. Dairy. 1(1), 3-29.
Vyas D., Alemu A.W., McGinn S.M., Duval S.M., Kindermann M. and Beauchemin K.A. (2018). The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. J. Anim. Sci. 96(7), 2923-2938.
Vyas D., McGinn S.M., Duval S.M., Kindermann M. and Beauchemin K.A. (2016). Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle. J. Anim. Sci. 94(5), 2024-2034.
Waghorn G.C. and Woodward S.L. (2006). Ruminant Contributions to Methane and Global Warming-A New Zealand Perspective. Pp. 233-260 in Climate Change and Managed Ecosystems,J.S. Bhatti, R. Lal, M.J. Apps and M.A. Price, Eds. CRC Press, New York.
Wang S., Giller K., Kreuzer M., Ulbrich S.E., Braun U. and Schwarm A. (2017). Contribution of ruminal fungi, archaea, protozoa, and bacteria to the methane suppression caused by oilseed supplemented diets. Front. Microbiol. 8, 1864-1874.
White R.R. and Hall M.B. (2017). Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl. Acad. Sci. 114(48), 10301-10308.
Wild K.J., Steingaß H. and Rodehutscord M. (2019). Variability of in vitro ruminal fermentation and nutritional value of cell disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy. 11(1), 345-359.
Wilson J.R. and Hatfield R.D. (1997). Structural and chemical changes of cell wall types during stem development: Consequences for fibre degradation by rumen microflora. Australian J. Agric. Res. 48(2), 165-180.
Winders T.M., Boyd B.M., Hilscher H.F., Fernando S.C., Stowell R.R. and Erickson G.E. (2019). Corn oil supplementation on performance and methane production in finishing steers. Nebraska Beef Cattle Rep. 103, 60-62.
Wu H., Meng Q., Zhou Z. and Yu Z. (2019). Ferric citrate, nitrate, saponin and their combinations affect in vitro ruminal fermentation, production of sulphide and methane and abundance of select microbial populations. J. Appl. Microbiol. 127(1), 150-158.
Zabranska J. and Pokorna D. (2018). Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol. Adv. 36(3), 707-720.
Zhao L., Meng Q., Ren L., Liu W., Zhang X., Huo Y. and Zhou Z. (2015). Effects of nitrate addition on rumen fermentation, bacterial biodiversity and abundance. Asian-Australasian J. Anim. Sci. 28, 1433-1441.