تغییرات غلظت عناصر غذایی آزولا (Azolla caroliniana) در سطوح مختلف آرسنیک و شوری
محورهای موضوعی : آلودگی های محیط زیست (آب، خاک و هوا)لیلا غیرتی آرانی 1 * , صلاح الدین مرادی 2 , جعفر صوفیان 3
1 - استادیار گروه کشاورزی، دانشکده علوم کشاورزی، دانشگاه پیام نور تهران، ایران. *(مسوول مکاتبات)
2 - استادیار گروه کشاورزی، دانشکده علوم کشاورزی، دانشگاه پیام نور تهران، ایران.
3 - مربی گروه کشاورزی، دانشکده علوم کشاورزی، دانشگاه پیام نور تهران، ایران.
کلید واژه: آزولا, تنش شوری, عناصر, فلزات سنگین,
چکیده مقاله :
پیشرفت سریع فناوری در دهه های اخیر با وجود مزایای فراوانی که برای بشر داشته، منابع طبیعی و اجزای محیط زیست را در معرض آلاینده های مختلف از جمله فلزات سنگین قرار داده است. به منظور بررسی پتانسیل آزولا، برای جذب آرسنیک و عناصر غذایی از محلولآبی با شوری های مختلف یک آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه به اجرا در آمد. سطوح مختلف آرسنیک عبارت بود از صفر، 5، 10، 20، 40، 80 و 160 میلی گرم در لیتر آرسنیک که از منبع آرسنات سدیم تأمین و به محلول غذایی اپستین اضافه شد. غلظت نمک عبارت بود از صفر، 10، 20، 40 و 80 میلی مولار که از منبع کلرور سدیم به محلول غذایی اپستین اضافه گردید. پس از ساخت محلول های غذایی با شوری و غلظت های مختلف آرسنیک، در آن گیاه آبزی آزولا به مدت سی روز پرورش داده شد. نتایج نشان داد که وجود عنصر سنگین آرسنیک و شوری باعث کاهش رشد و حتی باعث مرگ حتمی گیاه در غلظت های بالا شد. گیاه آزولا غلظت های بالایی از عنصر سنگین آرسنیک را در بافت های خود تجمع داد. نتایج نشان داد که شوری باعث کاهش جذب آرسنیک به وسیله آزولا شد. آرسنیک سبب افزایش غلظت کلسیم، سدیم و منگنز و کاهش غلظت نیتروژن، فسفر، پتاسیم، منیزیم، آهن، روی و مس شد. تیمارهای شوری و تیمارهای اثرات متقابل آرسنیک و شوری سبب افزایش غلظت سدیم و کاهش غلظت نیتروژن، فسفر، پتاسیم، کلسیم، منیزیم، آهن، روی، منگنز و مس شد.
Rapid technological advances in recent decades despite the many benefits for human, exposed the natural resources and environmental components to various contaminants such as heavy metals. In order to evaluate the potential of Azolla, to absorb arsenic and nutrient from solution contaning different concentrations of salinity, a factorial experiment with completely randomized design and three replications were conducted in the greenhouse. Different levels of Arsenic were 0, 5, 10, 20, 40, 80 and 160 mg/liter. Arsenic was provided from source of sodium arsenate and was added to the Epestin food solution. The concentrations of NaCl in Epestin nutrient solutions were 0, 10, 20, 40 and 80 mM. Nutrient solutions with different concentration of arsenic and NaCl were used to growth azolla, for a period of 30 days. The result showed that existance of Arsenic heavy metal and salinity decreased the growth rate of azolla and even caused death where their concentrations were high. The azolla accumulated high concentration of arsenic solutions in their tissues. Assessing the effect of salinity on arsenic of the azolla indicated that increase in salinity levels of nutrient solution, decreased arsenic concentration. Arsenic increasing concentrations of calcium, sodium, manganese and decrease nitrogen, phosphorus, potassium, magnesium, iron, zinc and copper. Salinity treatments and mutual effects of arsenic and salinity treatments increased sodium and decreasing concentrations of nitrogen, phosphorus, potassium, calcium, magnesium, iron, zinc, manganese and copper.
1) Pal, M., Singh, D. K., Rao, L. S. and Singh, K. P. 2004. Photosynthetic characteristics and activity of antioxidant enzymes in salinity tolerant and sensitive rice cultivars. Indian Journal of Plant Physiology. 9: 407-412.
2) Gupta, V. K., Shrivastava, A. K. and Jain, N. 2001. Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Research. 35: 4079-4085.
3) Oram B, Halsor S, Redmond B. 2011. Water quality. Available at: www.wilkes.edu/Include/waterresearch/PDFs/Waterbooklet070610.pdf.
4) Roy, S. Parveen, Z. and Imamul Huq, S. M. 2012. Effect of Arsenic on the nutrient uptake pattern of Amaranthus. Dhaka University. Journal of Biological Sciences. 21(1): 87‐96.
5) Xue, P., Yan C., Sun, G. and Luo, Z. 2012. Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum. L. Environmental Science and Pollution Research. 19:3969–3976.
6) Ozkutlu, F., Ozturk, L., Erdem, H., McLaughlin, M. and Cakmak, I. 2007. Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain. Plant and soil. 290(1-2): 323-331.
7) Sasmaz, A. and Obek, E. 2009. The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents. Ecological Engineering. 35:1564–1567.
8) Stêpniewska, Z., Bennicelli, R.P., Balakhnina, T.I., Szajnocha, K., Banach, A. and Woliñska, A. 2005. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. institute of agrophysics polish academy of sciences. 19: 251-255.
9) Agastian, P., Kingsley., S. J. and Vivekanandan, M. 2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 38: 287-290.
10) Parida K. A. and Das B. A. 2005. Salt tolerance and salinity effects on plants: review. Ecotoxicology and Environmental Safety. 60: 324-349.
11) Leblebtect, Z., Akosy, A. and Duman, F. 2006. Influence of salinity on the growth and heavy metal accumulation capacity of Spirodela polyrrhiza. Turkish Journal of Biology. 35: 215-220.
12) Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 55:141–146.
13) Epstein Emanuel. 1972. Mineral Nutrition of Plants: Principles and Perspectives. New York. John Wiley, pp. 412.
14) Ozturk, F., Duman, F., Leblebici, Z. and Temizgul, R. 2010. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environmental and Experimental Botany. 69: 167–174.
15) Mkandavire, M. and Dude, E.G. 2005. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Science of the Total Environment. 336, 81-89.
16) Wang, D., Shannon, M. C. and Grieve, C. M. 2001. Salinity reduces radiation absorption and use efficiency in soyabean. Field Crops Research. 69: 267-277.
17) Melloni, D. A., Oliva, M. A., Martinez, C. A. and Cambraia, J. 2003. Photosynthesis activity of super oxide dismotase, peroxides and glutathione reductase in Cotton under salt stress. Environmental and Experimental Botany, 49: 69-76.
18) Lui, Q., Hu, C., Tan, Q., Sun, X., Su, J. and Liang, Y. 2008. Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. Journal of Environmental Sciences. 20(3): 326‐331.
19) Tu, C. and Ma, Q. 2005. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environmental Pollution. 135: 333-340.
20) Meharg, A. A. and Macnair, M. R. 1990. An altered phosphate uptake system in arsenate‐tolerant Holcus lanatus L. New Phytologist. 116: 29‐35.
21) Chen, T. B., and Wei, C.Y. 2000. Arsenic hyper accumulation in some plant species in South China. Proceedings of International Conference of Soil Remediation, Hangzhou, China. P 194-195.
22) Meharg AA, Hartley-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154: 29–43.
23) Lombi, E., Zhao, F. J., Fuhrmann, M., Ma, L.Q. and McGrath, S. P. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist. 156: 195-203.
24) Gomes, M. P., Duarte, D. M., Miranda, P. L. S., Barreto, L. C., Matheus, M. T. and Garcia, Q. S. 2012. The effects of arsenic on the growth and nutritional status of Anadenanthera peregrine, a Brazilian savanna tree. Journal of Plant Nutrition and Soil Science. 175(3): 466-473.
25) Sridokchan, W., Markich, S. and Visoottiviseth, P. 2005. Arsenic Tolerance, Accumulation and Element Distribution in Twelwe Ferns: a Screening Study. Australasian Journal of Ecotoxicology. 11: 101-110.
26) Ben-Gal, A. and Shani, U. 2003. Water use and yield of tomatoes under limited water and excess boron. Plant and Soil. 256: 179-186.
27) Martinez, V. and Lauchli, A. 1994. Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutumL.). New Physiological. 125: 609-614.
28) Navarro, J. M., Botella, M. A., Ceda, A. and Martineze, V. 2001. Phosphorus uptake and translocation in salt-stressed melon plants. Journal of Plant Physioly. 158: 175-181.
29) زعفرانچیزاده مقدم، م. 1373. تاثیر ماده تنظیم کننده کلراید و کلسیم کلراید بر تحمل گندم نسبت به شوری و تغذیه فسفات در مراحل اولیه رشد. پایان نامه کارشناسی ارشد رشته علوم گیاهی (گرایش فیزیولوژی). دانشکده علوم پایه. دانشگاه تربیت مدرس، تهران، ایران.
30) Grattan, S. R. and Grieve, C. M. 1999. Salinity-mineral nutrients relations in horticultural crops. Scientia Horticulturae. 78: 127-157.
31) Duran Zuazo, V. H., Martinez-Raya, A., Aguilar Ruiz, J. and Franco Tarifa D. 2005. Impact of salinity on macro and micro nutrient uptake in mango (Mangifera indica L. cv. Osteen) with different rootstocks. Spanish Journal of Agriculture Research. 2(1):121-133.
32) اسکندری، س. و مظفری، و. 1390. تأثیر شوری و مس بر جذب عناصر کم مصرف در ریشه نهال های دو رقم پسته تحت شرایط گلخانه. اولین کنگره ملی علوم و فناوری های نوین کشاورزی، زنجان، 281-277.
El-Fouly, M., Zeniab, M. and Zeniab, A. S. 2001. Micronutrient spary as a tool to increase tolerance of faba bean and wheat plants to salinity. XIV International Plant Nutrition Colloquium. Hanover, Germany. 422-
_||_1) Pal, M., Singh, D. K., Rao, L. S. and Singh, K. P. 2004. Photosynthetic characteristics and activity of antioxidant enzymes in salinity tolerant and sensitive rice cultivars. Indian Journal of Plant Physiology. 9: 407-412.
2) Gupta, V. K., Shrivastava, A. K. and Jain, N. 2001. Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Research. 35: 4079-4085.
3) Oram B, Halsor S, Redmond B. 2011. Water quality. Available at: www.wilkes.edu/Include/waterresearch/PDFs/Waterbooklet070610.pdf.
4) Roy, S. Parveen, Z. and Imamul Huq, S. M. 2012. Effect of Arsenic on the nutrient uptake pattern of Amaranthus. Dhaka University. Journal of Biological Sciences. 21(1): 87‐96.
5) Xue, P., Yan C., Sun, G. and Luo, Z. 2012. Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum. L. Environmental Science and Pollution Research. 19:3969–3976.
6) Ozkutlu, F., Ozturk, L., Erdem, H., McLaughlin, M. and Cakmak, I. 2007. Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain. Plant and soil. 290(1-2): 323-331.
7) Sasmaz, A. and Obek, E. 2009. The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents. Ecological Engineering. 35:1564–1567.
8) Stêpniewska, Z., Bennicelli, R.P., Balakhnina, T.I., Szajnocha, K., Banach, A. and Woliñska, A. 2005. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. institute of agrophysics polish academy of sciences. 19: 251-255.
9) Agastian, P., Kingsley., S. J. and Vivekanandan, M. 2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 38: 287-290.
10) Parida K. A. and Das B. A. 2005. Salt tolerance and salinity effects on plants: review. Ecotoxicology and Environmental Safety. 60: 324-349.
11) Leblebtect, Z., Akosy, A. and Duman, F. 2006. Influence of salinity on the growth and heavy metal accumulation capacity of Spirodela polyrrhiza. Turkish Journal of Biology. 35: 215-220.
12) Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere. 55:141–146.
13) Epstein Emanuel. 1972. Mineral Nutrition of Plants: Principles and Perspectives. New York. John Wiley, pp. 412.
14) Ozturk, F., Duman, F., Leblebici, Z. and Temizgul, R. 2010. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environmental and Experimental Botany. 69: 167–174.
15) Mkandavire, M. and Dude, E.G. 2005. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Science of the Total Environment. 336, 81-89.
16) Wang, D., Shannon, M. C. and Grieve, C. M. 2001. Salinity reduces radiation absorption and use efficiency in soyabean. Field Crops Research. 69: 267-277.
17) Melloni, D. A., Oliva, M. A., Martinez, C. A. and Cambraia, J. 2003. Photosynthesis activity of super oxide dismotase, peroxides and glutathione reductase in Cotton under salt stress. Environmental and Experimental Botany, 49: 69-76.
18) Lui, Q., Hu, C., Tan, Q., Sun, X., Su, J. and Liang, Y. 2008. Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. Journal of Environmental Sciences. 20(3): 326‐331.
19) Tu, C. and Ma, Q. 2005. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environmental Pollution. 135: 333-340.
20) Meharg, A. A. and Macnair, M. R. 1990. An altered phosphate uptake system in arsenate‐tolerant Holcus lanatus L. New Phytologist. 116: 29‐35.
21) Chen, T. B., and Wei, C.Y. 2000. Arsenic hyper accumulation in some plant species in South China. Proceedings of International Conference of Soil Remediation, Hangzhou, China. P 194-195.
22) Meharg AA, Hartley-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154: 29–43.
23) Lombi, E., Zhao, F. J., Fuhrmann, M., Ma, L.Q. and McGrath, S. P. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist. 156: 195-203.
24) Gomes, M. P., Duarte, D. M., Miranda, P. L. S., Barreto, L. C., Matheus, M. T. and Garcia, Q. S. 2012. The effects of arsenic on the growth and nutritional status of Anadenanthera peregrine, a Brazilian savanna tree. Journal of Plant Nutrition and Soil Science. 175(3): 466-473.
25) Sridokchan, W., Markich, S. and Visoottiviseth, P. 2005. Arsenic Tolerance, Accumulation and Element Distribution in Twelwe Ferns: a Screening Study. Australasian Journal of Ecotoxicology. 11: 101-110.
26) Ben-Gal, A. and Shani, U. 2003. Water use and yield of tomatoes under limited water and excess boron. Plant and Soil. 256: 179-186.
27) Martinez, V. and Lauchli, A. 1994. Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutumL.). New Physiological. 125: 609-614.
28) Navarro, J. M., Botella, M. A., Ceda, A. and Martineze, V. 2001. Phosphorus uptake and translocation in salt-stressed melon plants. Journal of Plant Physioly. 158: 175-181.
29) زعفرانچیزاده مقدم، م. 1373. تاثیر ماده تنظیم کننده کلراید و کلسیم کلراید بر تحمل گندم نسبت به شوری و تغذیه فسفات در مراحل اولیه رشد. پایان نامه کارشناسی ارشد رشته علوم گیاهی (گرایش فیزیولوژی). دانشکده علوم پایه. دانشگاه تربیت مدرس، تهران، ایران.
30) Grattan, S. R. and Grieve, C. M. 1999. Salinity-mineral nutrients relations in horticultural crops. Scientia Horticulturae. 78: 127-157.
31) Duran Zuazo, V. H., Martinez-Raya, A., Aguilar Ruiz, J. and Franco Tarifa D. 2005. Impact of salinity on macro and micro nutrient uptake in mango (Mangifera indica L. cv. Osteen) with different rootstocks. Spanish Journal of Agriculture Research. 2(1):121-133.
32) اسکندری، س. و مظفری، و. 1390. تأثیر شوری و مس بر جذب عناصر کم مصرف در ریشه نهال های دو رقم پسته تحت شرایط گلخانه. اولین کنگره ملی علوم و فناوری های نوین کشاورزی، زنجان، 281-277.
El-Fouly, M., Zeniab, M. and Zeniab, A. S. 2001. Micronutrient spary as a tool to increase tolerance of faba bean and wheat plants to salinity. XIV International Plant Nutrition Colloquium. Hanover, Germany. 422-