ارزیابی ابعاد مختلف تولید بیوگاز در هاضم های بی هوازی
محورهای موضوعی : انرژی های تجدید پذیرمرسده طاهری 1 , نیما کریمی 2 , مصطفی بیگدلی 3 *
1 - کارشناس ارشد مهندسی عمران- گرایش محیطزیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف
2 - کارشناس ارشد مهندسی عمران- گرایش محیطزیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف
3 - کارشناس ارشد مهندسی عمران- گرایش محیطزیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف *(مسئول مکاتبات)
کلید واژه: طرح های هاضم چندمرحلهای, جنبه های میکربی و آنزیمی, مواد خام پایدار, بیوگاز, منبع تجدید پذیر,
چکیده مقاله :
راهبردهای کلیدی به منظور توسعه یافتن یک منبع انرژی جایگزین با سوخت های فسیلی برای جبران نیاز کنونی به انرژی و بعلاوه به منظور کاهش نگرانی های زیست محیطی (اعم از آلودگی حجم زیاد پسماند و گرم شدن جهانی) مطرح می شوند. از این رو اقتصاد و فنآوری ها تا حد زیادی بستگی به منابع انرژی تجدیدپذیر سازگار با معیارهای زیست محیطی ازقبیل بیوگاز دارند. فناوری بیوگاز علاوه بر مزیت های فراوانی که دارد با محدودیت های خاصی نیز همراه است. به طوری که تولید انرژی بدون حضور عوامل متوقف کننده یک کار دشوار است و برای اطمینان از توسعه پایدار، میبایست فناوریهای دردسترس جاگزین شوند. پیشرفت های بیشتر باعث توجه مجدد و عمیق تری در فن آوری تولید بیوگاز شده است. در حالی که این موضوع اثرات بزرگی در کاهش مسائل عمده اقتصادی مطرح در جهان دارد. مرور کنونی به عوامل محدود کننده و ارزیابی پیشرفت های تکنولوژیکی اخیر همراه با جنبههای مختلف تولید بیوگاز مانند استفاده از مواد خام پایدار، میکروبی و پویایی های آنزیم، پارامتر بهینه سازی و فرایند تفکیک برای افزایش این تکنولوژی می پردازد. آماده سازی زیستی آنزیمی و شناخت میکروب های کارآمد، امکان تقویت انرژی هضم بی هوازی را به طور قابل ملاحظه ای فراهم می کند. لذا بهینه سازی پارامترهای مختلف برای سرعت بخشیدن به تولید بیوگاز در طول هضم بی هوازی نسبت به قبل و بعد آن ترجیح داده شده است. همچنین علیرغم توسعه طرح های هاضم چند مرحله ای به قصد دستیابی به موفقیت در فرایند تفکیک، تحقیقات بیشتر برای رسیدن به عملکرد بهتر سیستم نیاز است.
The key strategies to develop an alternative energy source instead of fossil fuels are outlined to compensate for current energy needs and to decrease environmental concerns such as high volume of waste pollution and global warming. So the economy and technologies largely depends on consistent renewable source with environmental criteria of biomass and actually biogas. Biogas technology is associated with certain limitations in addition to the many advantages. So that energy production is a difficult task without having stopping elements in which the alternative concepts is necessary to ensure sustainable development with accessible technologies. Further advances in technology led to renewed and deeper interest in biogas production, while it has great effects in reducing major economic problems in the world. The current review addresses the limiting factors and evaluation of recent technological advances associated with various aspects of biogas production such as the use of sustainable feedstocks, microbial and enzyme dynamics, optimization parameter and dissociation process to enhance this technology. Enzymatic bioassay and efficient microbial identification enables the energy of anaerobic digestion to be significantly enhanced. Therefore, optimization of different parameters to accelerate biogas production during anaerobic digestion has been preferred to pre- and post-anaerobic digestion. In spite of the development of multi-step digestion schemes in order to succeed in the separation process, further research is needed to achieve better system performance.
1- Gupta P, Singh RS, Sachan A, Vidyarthi AS, Gupta A. A re-appraisal on intensification of biogas production. Renewable and Sustainable Energy Reviews. 2012;16(7):4908-16.
2- Tarbaghia TM. Design of biogas plant to product energy with special application to Benghazi, Libya. Renewable energy. 1993;3(2):207-9.
3- Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource technology. 2009;100(22):5478-84.
4- Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology. 2008;99(17):7928-40.
5- Curry N. Modeling and Design of a Food Waste to Energy System for an Urban Building: Concordia University Montréal, Québec, Canada; 2010.
6- Kiran EU, Trzcinski AP, Ng WJ, Liu Y. Bioconversion of food waste to energy: a review. Fuel. 2014;134:389-99.
7- Okonko IO, Adeola O, Aloysius F, Damilola A, Adewale O. Utilization of food wastes for sustainable development. EJEAFChe. 2009;8(4):120-44.
8- Hahn H, Krautkremer B, Hartmann K, Wachendorf M. Review of concepts for a demand-driven biogas supply for flexible power generation. Renewable and Sustainable Energy Reviews. 2014;29:383-93.
9- Silva M, Naik T. Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal for a mid-size city. Sustainable Construction Materials and Technologies. 2007;63.
10- Schlegel M, Kanswohl N, Rossel D, Sakalauskas A, editors. Essential technical parameters for effective biogas production. Agronomy Research; 2008: Estonian University of Life Sciences, Jõgeva Plant Breeding Institute, Estonian Research Institute of Agriculture.
11- Zhu JY, Pan X, Zalesny Jr RS. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Applied microbiology and biotechnology. 2010;87(3):847-57.
12- Singh R, Shukla A, Tiwari S, Srivastava M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews. 2014;32:713-28.
13- Chaiprasert P. Biogas production from agricultural wastes in Thailand. J Sustainable Energ Environ Spec Issue. 2011:63-5.
14- Sagagi B, Garba B, Usman N. Studies on biogas production from fruits and vegetable waste. Bayero Journal of Pure and Applied Sciences. 2009;2(1):115-8.
15- Chandra R, Vijay VK, Subbarao PM, editors. A study on biogas generation from non-edible oil seed cakes: potential and prospects in India. The 2nd Joint International Conference on Sustainable Energy and Environment; 2006.
16- Dhanya M, Gupta N, Joshi H. Biogas potentiality of agro-wastes Jatropha fruit coat. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering. 2009;3(3):70-4.
17- Chellapandi P, Prabaharan D, Uma L. A preliminary study on co-digestion of ossein industry waste for methane production. 2010.
18- Jash T, Ghosh D. Studies on the solubilization kinetics of solid organic residues during anaerobic biomethanation. Energy. 1996;21(7):725-30.
19- Ten Brummeler, E., M. Aarnink, and I. Koster, Dry anaerobic digestion of solid organic waste in a biocel reactor at pilot-plant scale. Water Science and Technology, 1992. 25(7): p. 301-310.
20- Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews. 2012;16(3):1462-76.
21- Puyuelo B, Ponsá S, Gea T, Sánchez A. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere. 2011;85(4):653-9.
22- Sanders F, Bloodgood DE. The effect of nitrogen-to-carbon ratio on anaerobic decomposition. Journal (Water Pollution Control Federation). 1965:1741-52.
23- Laura R, Idnani M. Increased production of biogas from cowdung by adding other agricultural waste materials. Journal of the Science of Food and Agriculture. 1971;22(4):164-7.
24- Hassan HM, Belyea DA, El-Domiaty Hassan A, editors. Characterization of methane production from poultry manure. International Symposium on Livestock, 3; 1975: ASAE.
25- Mitchell M, Hartenstein R, Swift B, Neuhauser E, Abrams B, Mulligan R, et al. Effects of different sewage sludges on some chemical and biological characteristics of soil. Journal of Environmental Quality. 1978;7(4):551-9.
26- Parawira W, Read JS, Mattiasson B, Björnsson L. Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass and Bioenergy. 2008;32(1):44-50.
27- Schnurer A, Jarvis A. Microbiological handbook for biogas plants. Swedish Waste Management U. 2010;2009:1-74.
28- Naik L, Gebreegziabher Z, Tumwesige V, Balana BB, Mwirigi J, Austin G. Factors determining the stability and productivity of small scale anaerobic digesters. biomass and bioenergy. 2014;70:51-7.
29- Anand V, Chanakya H, Rajan M. Solid phase fermentation of leaf biomass to biogas. Resources, conservation and recycling. 1991;6(1):23-33.
30- Hills DJ. Effects of carbon: nitrogen ratio on anaerobic digestion of dairy manure. Agricultural wastes. 1979;1(4):267-78.
31- Fraser MD, editor The economics of SNG production by anaerobic digestion of specially grown plant matter. Clean Fuels from Biomass and Wastes; 1977.
32- Wang X, Yang G, Feng Y, Ren G, Han X. Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology. 2012;120:78-83.
33- Nopharatana A, Pullammanappallil PC, Clarke WP. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste management. 2007;27(5):595-603.
34- Rubindamayugi MS, Mshandete AM, Björnsson L, Kivaisi AK, Mattiasson B. Effect of Particle Size on Biogas Yield from Sisal Fibre Waste. 2006.
35- Ofoefule AU, Nwankwo JI, Ibeto CN. Biogas Production from Paper Waste and its blend with Cow dung. Adv Appl Sci Res. 2010;1(2):1-8.
36- Iyagba ET, Mangibo IA, Mohammad YS. The study of cow dung as co-substrate with rice husk in biogas production. Scientific Research and Essays. 2009;4(9):861-6.
37- Vivekanandan S, Kamaraj G. The study of biogas production from rice chaff (karukka) as co-substrate with cow dung. Indian Journal of Science and Technology. 2011;4(6):657-9.
38- Álvarez J, Otero L, Lema J. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource technology. 2010;101(4):1153-8.
39- Goberna M, Schoen M, Sperl D, Wett B, Insam H. Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters. biomass and bioenergy. 2010;34(3):340-6.
40- Cavinato C, Fatone F, Bolzonella D, Pavan P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresource technology. 2010;101(2):545-50.
41- Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research. 2003;7(3):609-16.
42- Lo H, Kurniawan T, Sillanpää M, Pai T, Chiang C, Chao K, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresource Technology. 2010;101(16):6329-35.
43- Parawira W, Murto M, Zvauya R, Mattiasson B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy. 2004;29(11):1811-23.
44- Hejnfelt A, Angelidaki I. Anaerobic digestion of slaughterhouse by-products. Biomass and bioenergy. 2009;33(8):1046-54.
45- Avcioğlu, A.O. and U. Türker, Status and potential of biogas energy from animal wastes in Turkey. Renewable and Sustainable Energy Reviews, 2012. 16(3): p. 1557-1561.
46- Scaglione D, Caffaz S, Ficara E, Malpei F, Lubello C. A simple method to evaluate the short-term biogas yield in anaerobic codigestion of WAS and organic wastes. Water Science and Technology. 2008;58(8):1615-22.
47- Kang H, Weiland P. Ultimate anaerobic biodegradability of some agro-industrial residues. Bioresource technology. 1993;43(2):107-11.
48- Song Z, Yang G, Guo Y, Zhang T. Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources. 2012;7(3):3223-36.
49- Hartmann H, Ahring BK. Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water research. 2005;39(8):1543-52.
50- Carucci G, Carrasco F, Trifoni K, Majone M, Beccari M. Anaerobic digestion of food industry wastes: effect of codigestion on methane yield. Journal of Environmental Engineering. 2005;131(7):1037-45.
51- Satyanarayan S, Murkute P. Biogas
production enhancement by Brassica compestries amendment in cattle dung digesters. Biomass and Bioenergy. 2008;32(3):210-5.
52- Clark SE. Method for anaerobic sludge digestion. Google Patents; 1995.
53- Bardiya N, Somayaji D, Khanna S. Biomethanation of banana peel and pineapple waste. Bioresource technology. 1996;58(1):73-6.
54- Tedjani F, Khouider A, Ghoualem H, editors. Characterisation and anaerobic treatment of a dairy effluent. The 2nd Maghreb Conference on desalination and water treatment, CMTDE, Hammamet, Tunisia; 2010.
55- Safley L, Westerman P. Performance of a low temperature lagoon digester. Bioresource Technology. 1992;41(2):167-75.
56- Gray D, Suto P, Peck C. Anaerobic digestion of food waste. East Bay Municipal Utility District Report. 2008.
57- Kwietniewska E, Tys J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews. 2014;34:491-500.
58- Liu C-f, Yuan X-z, Zeng G-m, Li W-w, Li J. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology. 2008;99(4):882-8.
59- Haga R, Ishida M, Odawara Y. Anaerobic digestion process of wastes containing cellulose. Google Patents; 1985.
60- Suryawanshi P, Chaudhari A, Kothari R. Thermophilic anaerobic digestion: the best option for waste treatment. Critical reviews in biotechnology. 2010;30(1):31-40.
61- Udelhoven T, Delfosse P, Bossung C, Ronellenfitsch F, Mayer F, Schlerf M, et al. Retrieving the bioenergy potential from maize crops using hyperspectral remote sensing. Remote Sensing. 2013;5(1):254-73.
62- Hobson PN, Wheatley A. Anaerobic digestion: modern theory and practice: Kluwer Academic Pub; 1993.
63- Omrani A, Ghiasseddin M. A PILOT PLANT FOR THE BIOGAS PRODUCTION. Iranian Journal of Public Health. 1988;17(1-4):19-28.
64- Fedailaine M, Moussi K, Khitous M, Abada S, Saber M, Tirichine N. Modeling of the Anaerobic Digestion of Organic Waste for Biogas Production. Procedia Computer Science. 2015;52:730-7.
65- Al Seadi T. Biogas handbook. 2008.
66- Kizilaslan H, Onurlubas HE. Potential of Production of Biogas from Animal Origin Waste in Turkey (Tokat Provincial Example). Journal of Animal and Veterinary Advances. 2010;9(6):1083-7.
67- Schulz H, Eder B. Biogas-Praxis: Grundlagen. Planung, Anlagenbau, Beispiele. 2001.
68- Nasr, N., et al., Comparative assessment of single-stage and two-stage anaerobic digestion for thetreatment of thin stillage. Bioresource technology, 2012. 111: p. 122-126.
69- Mohseni F, Magnusson M, Görling M, Alvfors P. Biogas from renewable electricity–Increasing a climate neutral fuel supply. Applied Energy. 2012;90(1):11-6.
70- Cesaro A, Naddeo V, Amodio V, Belgiorno V. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrasonics sonochemistry. 2012;19(3):596-600.
71- Kana EG, Oloke J, Lateef A, Adesiyan M. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renewable Energy. 2012;46:276-81.
72- Thorin E, Lindmark J, Nordlander E, Odlare M, Dahlquist E, Kastensson J, et al. Performance optimization of the Växtkraft biogas production plant. Applied energy. 2012;97:503-8.
73- Zheng Y, Wei J, Li J, Feng S, Li Z, Jiang G, et al. Anaerobic fermentation technology increases biomass energy use efficiency in crop residue utilization and biogas production. Renewable and Sustainable Energy Reviews. 2012;16(7):4588-96.
74- Senthilkumar V, Gunasekaran P. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges. Journal of Scientific and Industrial Research. 2005;64(11):845.
75- Lalov IG, Krysteva MA, Phelouzat J-L. Improvement of biogas production from vinasse via covalently immobilized methanogens. Bioresource Technology. 2001;79(1):83-5.
76- Kalle, G., K.K. Nayak, and C. De Sa, An approach to improve methanogenesisthrough the use of mixed cultures isolated from biogas digester. Journal of Biosciences, 1985. 9(3-4): p. 137-144.
77- Weiß S, Tauber M, Somitsch W, Meincke R, Müller H, Berg G, et al. Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water research. 2010;44(6):1970-80.
78- Park C, Lee C, Kim S, Chen Y, Chase HA. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. Journal of bioscience and bioengineering. 2005;100(2):164-7.
79- Christy PM, Gopinath L, Divya D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews. 2014;34:167-73.
80- Attar Y, Mhetre S, Shawale M, editors. Biogas production enhancement by cellulytic strains of Actinomycetes. Biogas Forum I; 1998.
81- Wahyudi, A., L. Hendraningsih, and A. Malik, Potency of fibrolytic bacteria isolated from Indonesian sheep’s colon as inoculum for biogas and methane production. African Journal of Biotechnology, 2010. 9(20).
82- Plochl M, Hilse A, Heiermann M, Surez Quinones T, Budde J, Prochnow A. Hydrolytic enzymes improve fluidity of biogas feedstock. Agricultural Engineering International: the CIGR Ejournal Manuscript. 2009;1529.
83- Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, et al., editors. Weak lignin-binding enzymes. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals; 2005: Springer.
84- Luna-delRisco M, Orupõld K, Dubourguier H-C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. Journal of hazardous materials. 2011;189(1):603-8.
_||_1- Gupta P, Singh RS, Sachan A, Vidyarthi AS, Gupta A. A re-appraisal on intensification of biogas production. Renewable and Sustainable Energy Reviews. 2012;16(7):4908-16.
2- Tarbaghia TM. Design of biogas plant to product energy with special application to Benghazi, Libya. Renewable energy. 1993;3(2):207-9.
3- Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource technology. 2009;100(22):5478-84.
4- Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology. 2008;99(17):7928-40.
5- Curry N. Modeling and Design of a Food Waste to Energy System for an Urban Building: Concordia University Montréal, Québec, Canada; 2010.
6- Kiran EU, Trzcinski AP, Ng WJ, Liu Y. Bioconversion of food waste to energy: a review. Fuel. 2014;134:389-99.
7- Okonko IO, Adeola O, Aloysius F, Damilola A, Adewale O. Utilization of food wastes for sustainable development. EJEAFChe. 2009;8(4):120-44.
8- Hahn H, Krautkremer B, Hartmann K, Wachendorf M. Review of concepts for a demand-driven biogas supply for flexible power generation. Renewable and Sustainable Energy Reviews. 2014;29:383-93.
9- Silva M, Naik T. Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal for a mid-size city. Sustainable Construction Materials and Technologies. 2007;63.
10- Schlegel M, Kanswohl N, Rossel D, Sakalauskas A, editors. Essential technical parameters for effective biogas production. Agronomy Research; 2008: Estonian University of Life Sciences, Jõgeva Plant Breeding Institute, Estonian Research Institute of Agriculture.
11- Zhu JY, Pan X, Zalesny Jr RS. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Applied microbiology and biotechnology. 2010;87(3):847-57.
12- Singh R, Shukla A, Tiwari S, Srivastava M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews. 2014;32:713-28.
13- Chaiprasert P. Biogas production from agricultural wastes in Thailand. J Sustainable Energ Environ Spec Issue. 2011:63-5.
14- Sagagi B, Garba B, Usman N. Studies on biogas production from fruits and vegetable waste. Bayero Journal of Pure and Applied Sciences. 2009;2(1):115-8.
15- Chandra R, Vijay VK, Subbarao PM, editors. A study on biogas generation from non-edible oil seed cakes: potential and prospects in India. The 2nd Joint International Conference on Sustainable Energy and Environment; 2006.
16- Dhanya M, Gupta N, Joshi H. Biogas potentiality of agro-wastes Jatropha fruit coat. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering. 2009;3(3):70-4.
17- Chellapandi P, Prabaharan D, Uma L. A preliminary study on co-digestion of ossein industry waste for methane production. 2010.
18- Jash T, Ghosh D. Studies on the solubilization kinetics of solid organic residues during anaerobic biomethanation. Energy. 1996;21(7):725-30.
19- Ten Brummeler, E., M. Aarnink, and I. Koster, Dry anaerobic digestion of solid organic waste in a biocel reactor at pilot-plant scale. Water Science and Technology, 1992. 25(7): p. 301-310.
20- Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews. 2012;16(3):1462-76.
21- Puyuelo B, Ponsá S, Gea T, Sánchez A. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere. 2011;85(4):653-9.
22- Sanders F, Bloodgood DE. The effect of nitrogen-to-carbon ratio on anaerobic decomposition. Journal (Water Pollution Control Federation). 1965:1741-52.
23- Laura R, Idnani M. Increased production of biogas from cowdung by adding other agricultural waste materials. Journal of the Science of Food and Agriculture. 1971;22(4):164-7.
24- Hassan HM, Belyea DA, El-Domiaty Hassan A, editors. Characterization of methane production from poultry manure. International Symposium on Livestock, 3; 1975: ASAE.
25- Mitchell M, Hartenstein R, Swift B, Neuhauser E, Abrams B, Mulligan R, et al. Effects of different sewage sludges on some chemical and biological characteristics of soil. Journal of Environmental Quality. 1978;7(4):551-9.
26- Parawira W, Read JS, Mattiasson B, Björnsson L. Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass and Bioenergy. 2008;32(1):44-50.
27- Schnurer A, Jarvis A. Microbiological handbook for biogas plants. Swedish Waste Management U. 2010;2009:1-74.
28- Naik L, Gebreegziabher Z, Tumwesige V, Balana BB, Mwirigi J, Austin G. Factors determining the stability and productivity of small scale anaerobic digesters. biomass and bioenergy. 2014;70:51-7.
29- Anand V, Chanakya H, Rajan M. Solid phase fermentation of leaf biomass to biogas. Resources, conservation and recycling. 1991;6(1):23-33.
30- Hills DJ. Effects of carbon: nitrogen ratio on anaerobic digestion of dairy manure. Agricultural wastes. 1979;1(4):267-78.
31- Fraser MD, editor The economics of SNG production by anaerobic digestion of specially grown plant matter. Clean Fuels from Biomass and Wastes; 1977.
32- Wang X, Yang G, Feng Y, Ren G, Han X. Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresource Technology. 2012;120:78-83.
33- Nopharatana A, Pullammanappallil PC, Clarke WP. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste management. 2007;27(5):595-603.
34- Rubindamayugi MS, Mshandete AM, Björnsson L, Kivaisi AK, Mattiasson B. Effect of Particle Size on Biogas Yield from Sisal Fibre Waste. 2006.
35- Ofoefule AU, Nwankwo JI, Ibeto CN. Biogas Production from Paper Waste and its blend with Cow dung. Adv Appl Sci Res. 2010;1(2):1-8.
36- Iyagba ET, Mangibo IA, Mohammad YS. The study of cow dung as co-substrate with rice husk in biogas production. Scientific Research and Essays. 2009;4(9):861-6.
37- Vivekanandan S, Kamaraj G. The study of biogas production from rice chaff (karukka) as co-substrate with cow dung. Indian Journal of Science and Technology. 2011;4(6):657-9.
38- Álvarez J, Otero L, Lema J. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource technology. 2010;101(4):1153-8.
39- Goberna M, Schoen M, Sperl D, Wett B, Insam H. Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters. biomass and bioenergy. 2010;34(3):340-6.
40- Cavinato C, Fatone F, Bolzonella D, Pavan P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresource technology. 2010;101(2):545-50.
41- Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research. 2003;7(3):609-16.
42- Lo H, Kurniawan T, Sillanpää M, Pai T, Chiang C, Chao K, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresource Technology. 2010;101(16):6329-35.
43- Parawira W, Murto M, Zvauya R, Mattiasson B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy. 2004;29(11):1811-23.
44- Hejnfelt A, Angelidaki I. Anaerobic digestion of slaughterhouse by-products. Biomass and bioenergy. 2009;33(8):1046-54.
45- Avcioğlu, A.O. and U. Türker, Status and potential of biogas energy from animal wastes in Turkey. Renewable and Sustainable Energy Reviews, 2012. 16(3): p. 1557-1561.
46- Scaglione D, Caffaz S, Ficara E, Malpei F, Lubello C. A simple method to evaluate the short-term biogas yield in anaerobic codigestion of WAS and organic wastes. Water Science and Technology. 2008;58(8):1615-22.
47- Kang H, Weiland P. Ultimate anaerobic biodegradability of some agro-industrial residues. Bioresource technology. 1993;43(2):107-11.
48- Song Z, Yang G, Guo Y, Zhang T. Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources. 2012;7(3):3223-36.
49- Hartmann H, Ahring BK. Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water research. 2005;39(8):1543-52.
50- Carucci G, Carrasco F, Trifoni K, Majone M, Beccari M. Anaerobic digestion of food industry wastes: effect of codigestion on methane yield. Journal of Environmental Engineering. 2005;131(7):1037-45.
51- Satyanarayan S, Murkute P. Biogas
production enhancement by Brassica compestries amendment in cattle dung digesters. Biomass and Bioenergy. 2008;32(3):210-5.
52- Clark SE. Method for anaerobic sludge digestion. Google Patents; 1995.
53- Bardiya N, Somayaji D, Khanna S. Biomethanation of banana peel and pineapple waste. Bioresource technology. 1996;58(1):73-6.
54- Tedjani F, Khouider A, Ghoualem H, editors. Characterisation and anaerobic treatment of a dairy effluent. The 2nd Maghreb Conference on desalination and water treatment, CMTDE, Hammamet, Tunisia; 2010.
55- Safley L, Westerman P. Performance of a low temperature lagoon digester. Bioresource Technology. 1992;41(2):167-75.
56- Gray D, Suto P, Peck C. Anaerobic digestion of food waste. East Bay Municipal Utility District Report. 2008.
57- Kwietniewska E, Tys J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews. 2014;34:491-500.
58- Liu C-f, Yuan X-z, Zeng G-m, Li W-w, Li J. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology. 2008;99(4):882-8.
59- Haga R, Ishida M, Odawara Y. Anaerobic digestion process of wastes containing cellulose. Google Patents; 1985.
60- Suryawanshi P, Chaudhari A, Kothari R. Thermophilic anaerobic digestion: the best option for waste treatment. Critical reviews in biotechnology. 2010;30(1):31-40.
61- Udelhoven T, Delfosse P, Bossung C, Ronellenfitsch F, Mayer F, Schlerf M, et al. Retrieving the bioenergy potential from maize crops using hyperspectral remote sensing. Remote Sensing. 2013;5(1):254-73.
62- Hobson PN, Wheatley A. Anaerobic digestion: modern theory and practice: Kluwer Academic Pub; 1993.
63- Omrani A, Ghiasseddin M. A PILOT PLANT FOR THE BIOGAS PRODUCTION. Iranian Journal of Public Health. 1988;17(1-4):19-28.
64- Fedailaine M, Moussi K, Khitous M, Abada S, Saber M, Tirichine N. Modeling of the Anaerobic Digestion of Organic Waste for Biogas Production. Procedia Computer Science. 2015;52:730-7.
65- Al Seadi T. Biogas handbook. 2008.
66- Kizilaslan H, Onurlubas HE. Potential of Production of Biogas from Animal Origin Waste in Turkey (Tokat Provincial Example). Journal of Animal and Veterinary Advances. 2010;9(6):1083-7.
67- Schulz H, Eder B. Biogas-Praxis: Grundlagen. Planung, Anlagenbau, Beispiele. 2001.
68- Nasr, N., et al., Comparative assessment of single-stage and two-stage anaerobic digestion for thetreatment of thin stillage. Bioresource technology, 2012. 111: p. 122-126.
69- Mohseni F, Magnusson M, Görling M, Alvfors P. Biogas from renewable electricity–Increasing a climate neutral fuel supply. Applied Energy. 2012;90(1):11-6.
70- Cesaro A, Naddeo V, Amodio V, Belgiorno V. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrasonics sonochemistry. 2012;19(3):596-600.
71- Kana EG, Oloke J, Lateef A, Adesiyan M. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renewable Energy. 2012;46:276-81.
72- Thorin E, Lindmark J, Nordlander E, Odlare M, Dahlquist E, Kastensson J, et al. Performance optimization of the Växtkraft biogas production plant. Applied energy. 2012;97:503-8.
73- Zheng Y, Wei J, Li J, Feng S, Li Z, Jiang G, et al. Anaerobic fermentation technology increases biomass energy use efficiency in crop residue utilization and biogas production. Renewable and Sustainable Energy Reviews. 2012;16(7):4588-96.
74- Senthilkumar V, Gunasekaran P. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges. Journal of Scientific and Industrial Research. 2005;64(11):845.
75- Lalov IG, Krysteva MA, Phelouzat J-L. Improvement of biogas production from vinasse via covalently immobilized methanogens. Bioresource Technology. 2001;79(1):83-5.
76- Kalle, G., K.K. Nayak, and C. De Sa, An approach to improve methanogenesisthrough the use of mixed cultures isolated from biogas digester. Journal of Biosciences, 1985. 9(3-4): p. 137-144.
77- Weiß S, Tauber M, Somitsch W, Meincke R, Müller H, Berg G, et al. Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water research. 2010;44(6):1970-80.
78- Park C, Lee C, Kim S, Chen Y, Chase HA. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes. Journal of bioscience and bioengineering. 2005;100(2):164-7.
79- Christy PM, Gopinath L, Divya D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews. 2014;34:167-73.
80- Attar Y, Mhetre S, Shawale M, editors. Biogas production enhancement by cellulytic strains of Actinomycetes. Biogas Forum I; 1998.
81- Wahyudi, A., L. Hendraningsih, and A. Malik, Potency of fibrolytic bacteria isolated from Indonesian sheep’s colon as inoculum for biogas and methane production. African Journal of Biotechnology, 2010. 9(20).
82- Plochl M, Hilse A, Heiermann M, Surez Quinones T, Budde J, Prochnow A. Hydrolytic enzymes improve fluidity of biogas feedstock. Agricultural Engineering International: the CIGR Ejournal Manuscript. 2009;1529.
83- Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, et al., editors. Weak lignin-binding enzymes. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals; 2005: Springer.
84- Luna-delRisco M, Orupõld K, Dubourguier H-C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. Journal of hazardous materials. 2011;189(1):603-8.