شناسایی و اعتبارسنجی مناطق بالقوه خطر سیلاب با استفاده از تکنیک آنالیز تصمیم گیری چند معیاره (MCDA) و پردازش داده های راداری سنتینل1
محورهای موضوعی : برنامه های کاربردی در خطر بلایای طبیعیعلی مهرابی 1 * , محسن پورخسروانی 2 , فریبا پورزارعی جلال آبادی 3
1 - دانشیارگروه جغرافیا و برنامه ریزی شهری، دانشکده ادبیات و علوم انسانی، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 - دانشیارگروه جغرافیا و برنامهریزی شهری، دانشکده ادبیات و علوم انسانی، دانشگاه شهید باهنر کرمان، کرمان، ایران
3 - دانشجوی کارشناسی ارشد برنامهریزی آمایش سرزمین، گروه جغرافیا و برنامهریزی شهری، دانشکده ادبیات و علوم انسانی، دانشگاه شهید
کلید واژه: تصاویر سنتینل 1, سنجش از دور, شاخص خطر سیلاب, حوضه زرند, Fuzzy-AHP,
چکیده مقاله :
امروزه به دلیل تغییرات آب و هوایی و رخداد بارندگیهای سیلآسا، مخاطره سیلاب یکی از معظلات مهم در مناطق خشک محسوب میشود. شهرستان زرند در استان کرمان یکی از این مناطق محسوب میشود که متاثر از این پدیده، متحمل صدمات زیادی در بخشهای زیربنایی و کشاورزی شده است. هدف از این پژوهش شناسایی و تعیین مناطق بالقوه خطر سیلاب با استفاده از تکنیکهای سنجش از دور و GIS است. در این راستا از هشت معیار جهت تهیه شاخص خطر سیلاب استفاده شد، این پارامترها شامل معیار جریان تجمعی، قابلیت تخلیه، ارتفاع، فاصله از آبراهه، پوشش زمین، ضریب رواناب، شیب و زمین شناسی میشود. لایههای مذکور در محیط GIS پس از تشکیل ماتریس مقایسات زوجی بر اساس روش Fuzzy-AHP وزندهی و تلفیق شدند. سرانجام، با توجه به شاخص خطر سیلاب (FHI) نقشه خطر سیلاب مربوط به منطقه مورد مطالعه تهیه شد. نتایج حاصله نشان میدهد که در حدود 5 درصد از محدوده مورد مطالعه را خطر بسیار بالا (18800 هکتار)، 23 درصد خطر بالا (94100 هکتار)، 44 درصد خطر متوسط (179700 هکتار)، 22 درصد خطر کم (88200 هکتار) و 6 درصد بسیار کم (23100 هکتار)، تشکیل می-دهد. محدودههای خطر بالا و خیلی بالا بیشتر در دشت و محدودههای کشاورزی واقع شدهاند. نتایج حاصل نشان می دهد که علاوه بر زمین های کشاورزی بسیاری از مناطق مسکونی به ویژه در روستاها در معرض خطر سیلاب قرار دارند. به منظور اعتبارسنجی نقشه خطر سیلاب ایجاد شده، از نقشه مناطق سیلزده حاصل از روش حد آستانه استفاده شد. مقایسه این دو نشان می دهد که حدود 32 و 49 درصد از مساحت کل مناطق سیلزده به ترتیب در طبقات با خطر بالا و خطر بسیار بالا قرار دارد. نتایج حاصل نشان داد که استفاده از روش تحلیل چند معیاره مبتنی بر GIS میتواند به طور موثر در تجزیه و تحلیل خطر سیلاب کارآمد باشد.
Today, due to climate change and the occurrence of torrential rains, flood hazard is one of the major problems in arid areas. Zarand city in Kerman province is one of these areas that has suffered a lot of damage in infrastructure and agriculture due to this phenomenon. The purpose of this study is to identify and determine potential flood hazard areas using remote sensing and GIS techniques. In this regard, eight criteria were used to prepare the flood hazard index, these parameters include the criteria of flow accumulation, draining capability, elevation, distance to drinage, land cover, runoff coefficient, slope and geology. The mentioned layers were weighed and combined in GIS environment after forming a pairwise comparison matrix based on Fuzzy-AHP method. Finally, according to the flood hazard index (FHI), a flood hazard map related to the study area was prepared. The results show that about 5% of the study area is very high hazard (18800 hectares), 23% high hazard (94100 hectares), 44% medium hazard (179700 hectares), 22% low hazard (88200 hectares) and 6% very low (23,100 hectares). High and very high hazard areas are mostly located in the plains and agricultural areas. In order to validate the created flood hazard map, the map of flooded areas obtained by applying the threshold method on the Sentinel 1 image was used. A comparison of the two shows that about 32 and 49% of the total area of flooded areas are in high-hazard and very high-hazard classes, respectively. The results showed that the use of GIS-based multi-criteria analysis method can be effective in flood hazard analysis.
1. Andualem T.G, Demeke G.G. 2019. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia, Journal of Hydrology: Regional Studies 24: 100610. doi:https://doi.org/10.1016/j.ejrh.2019.100610.
2. Azadikhah A, Bouzari S, Yassaghi A, Emami M.H. 2015. Formation of Extensional Basin in Internal Part of the Zag-Ros Orogeny in West of Sirjan, Iran, Open Journal of Geology, 5: 821-827.
3. Baharvand S, Rahnamarad J, Soori S. 2016. Delineation of groundwater recharge potential zones using weighted linear combination method (case study: Kuhdasht plain, Iran), Journal of Geotechnical Geology, 12(2): 119-125.
4. Bates P.D, Anderson M.G, Baird L, Walling D.E, Simm D. 2009. Modelling floodplain flow with a two dimensional finite element scheme, Earth Surface Processes and Landforms, 17: 575-588.
5. Chang D.Y. 1996. Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95: 649–655.
6. Das S. 2019. Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India, Remote Sensing Applications: Society and Environment, 14: 60-74.
7. Dash P, Sar J. 2020. Identification and validation of potential flood hazard area using GIS-based multi-criteria analysis and satellite data-derived water index, J Flood Hazard Management. 13:e12620. doi:https://doi.org/10.1111/jfr3.12620.
8. Demir V, Kisi O. 2016, Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey, Advances in Meteorology 2(3): 334-342.
9. Deshmukh KS, Shinde G. 2005. An adaptive color image segmentation electron. Electron Lett Computer Vis Image Anal 5(4):12–23. doi:https://doi.org/10.5565/rev/elcvi a.115.
10. Dutta D, Herath S, Musiake K. 2003. A mathematical model for flood loss estimation, Journal of Hydrology, 277(2): 24-49. doi:https://doi.org/10.1016/S0022-1694(03)00084-2.
11. Jenifer M.A, Jha M.K, 2017. Comparison of Analytic Hierarchy process, Catastrophe and Entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems, J. Hydrol. (Amst) 548: 605–624.
12. Kazakis N, Kougias I, Patsialis T. 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope-Evros region, Greece. Science of the Total Environment, 538: 555–563. doi:https://doi.org/10.1016/j.scitotenv.2015.08.055.
13. Khedmatzadeh A, Najafzadeh A. 2020. Flood Susceptibility Mapping and Risk Area Using GIS-Based Analytic Network Process (Case Study: Ghasemlou Hydrometric Station Basin), Journal of Science and Engineering Elites, 5(1): 6-12. (In Persian).
14. Mind'je R, Li L, Amanambu A. C, Nahayo L, Nsengiyumva J. B, Gasirabo A, Mindje M. 2019. Flood susceptibility modeling and hazard perception in Rwanda, International Journal of Disaster Hazard Reduction, 10: 1211.
15. Mir Mosavi S, Esmaeili H. 2021. Zoning of Flood-prone Areas Using Geographic Information System (GIS) and Remote Sensing (RS), (Case Study: Darab City), Journal of Natural Environmental Hazards, 10(27): 21-46. doi: https://doi.org/10.22111/jneh.2020.32986.1613. (In Persian).
16. Ouma Y. O, Tateishi R. 2014. Urban flood vulnerability and hazard mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment, Water, 6 (6): 1515–1545.
17. Pappenberger F, Frodsham K, Beven K, Romanowicz R, Matgen P. 2007. Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations, Hydrol. Earth Syst. Sci., 11: 739–752, doi:https://doi.org/10.5194/hess-11-739-2007, 2007.
18. Rajasekhar M, Raju G. S, Sreenivasulu Y, Raju R.S. 2019. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches, HydroResearch 2: 97–108. doi:https://doi.org/10.1016/j.hydres.2019.11.006.
19. Samela C, Albano R, Sole A, Manfreda S, 2018, A GIS tool for cost-effective delineation of flood-prone areas, Computers, Environment and Urban Systems 70: 43-52.
20. Soleimani Sardoo F, Rafiei Sarooi E, Mesbahzadeh T, Azareh A. 2021. Utilizing Sentinel 1 Images for Monitoring Damage of Flood Event in March 2020, the South of Kerman Province Based on Random Forest Algorithm, jwmseir. 15(53) :23-32. doi:http://jwmsei.ir/article-1-976-fa.html. (In Persian).
21. Tseng M.L, Lin Y.H, Chiu A.S.F, Chen C.Y. 2008. Fuzzy AHP approach to TQM strategy evaluation, IEMS 7(1): 34–43.
22. Valizadeh Kamran K, Delire Hasannia R, Azari Amghani K. 2019. Flood zoning and its impact on land use in the surrounding area using unmanned aerial vehicles (UAV) images and GIS, Journal of RS and GIS for Natural Resources, 10(3):59-75. (In Persian).
23. Viglione A, Merz R, Blöschl G. 2009. On the role of the runoff coefficient in the mapping of rainfall to flood return periods, Hydrology and Earth System Sciences, 13(5): 577–593.
24. Wu Y, Zhong P. A, Zhang Y, Xu B, Ma B, Yan K. 2015. Integrated flood hazard assessment and zonation method: A case study in Huaihe River basin, China, Natural Hazards, 78(1): 635–651.
25. Xiao JF, Li J, Moody A. 2003. A detail-preserving and flexible adaptive filter for speckle suppression in SAR imagery. Int J Remote Sens 24(12):2451–2465. doi:https://doi.org/10.1080/01431 16021 01548 85.
26. Youssef, A. M, Hegab M. A. 2019. Flood-Hazard Assessment Modeling Using Multicriteria Analysis and GIS: A Case Study—Ras Gharib Area, Egypt, Earth and Environmental Sciences 3: 229-257.