تحلیل کیفیت فضای سبز شهرستان کرج با استفاده از شاخص اکولوژیکی سنجش از دور (RSEI)
محورهای موضوعی : برنامه ریزی شهری
نارنین ناصری
1
,
میلاد حسین زاده نیری
2
,
رئوف مصطفی زاده
3
*
1 - کارشناس ارشد ارزیابی و آمایش سرزمین، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه ملایر، ملایر، ایران.
2 - دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم انسانی دانشگاه تربیت مدرس، تهران، ایران
3 - دانشیار، گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی و عضو پژوهشکده مدیریت آب، دانشگاه محقق اردبیلی، اربیل، ایران.
کلید واژه: کیفیت محیط زیست, فضای سبز, شاخص نرمالشده پوشش گیاهی استاندارد, شاخص کیفیت اکولوژیکی, دمای سطح زمین.,
چکیده مقاله :
افزایش فعالیتهای انسانی باعث ایجاد اختلال در اکوسیستمها و محیط زیست انسان در مقیاسهای مختلف شده است. تکنیکهای سنجش از دور برای تعیین کمیت و تشخیص تغییرات اکولوژیکی موثر تشخیص داده شده اند و میتواند بهعنوان یک جایگزین برای پایش تغییرات مکانی در شرایط اکولوژیکی محیط مطرح باشد. امروزه استفاده از دادههای سنجش از دور برای مطالعات مرتبط با کیفیت محیط زیست شهری نیز افزایش یافته است. در این پژوهش کیفیت اکولوژیکی محیط زیست شهرستان کرج با استفاده از تصاویر سری لندست در سالهای 2010 و 2020 با استفاده از تحلیل مؤلفههای اصلی درجه سبز، رطوبت، خشکی و گرما برای تعیین چهار شاخص اکولوژیکی سنجشازدور ارزیابی و تجزیه و تحلیل شد. شاخصهای اکولوژیکی سنجش از دوری مورد استفاده در استخراج کیفیت محیط زیست شامل شامل LST، NDVI، NDBI و WET است. نتایج نشان داد که کیفیت محیط زیست شهرستان کرج از سال 2010 تا 2022 به طور کلی سیر نزولی داشته و میانگین RSEI از 59/0 25/0 کاهش یافته است که نشان از تخریب محیط زیست این شهرستان باتوجه به گسترده شدن بخشهای مسکونی آن دارد. تغییرات محیط زیست در منطقه مورد مطالعه ارتباط تنگاتنگی با فعالیتهای انسانی در قالب گسترش مکانی مناطق مسکونی و توسعه دارد که ناشی از مهاجرپذیری منطقه مورد مطالعه و مجاورت آن با شهر تهران است. شاخص مورد استفاده در پژوهش حاضر میتواند به طور مناسبی تغییرات مکانی کیفیت محیط زیست را از ابعاد مختلف منعکس نماید و یک روش موثر برای ارزیابی جامع کیفیت محیط زیست و شرایط اکولوژیکی در محیطهای شهری است.
The increase of human activities has caused disturbances in human ecosystems and environment in different scales. Remote sensing techniques have been found to be effective for quantifying and detecting ecological changes and can be considered as an alternative for monitoring spatial changes in the ecological conditions of the environment. Today, the use of remote sensing data for studies related to the quality of the urban environment has also gained a great attention. In this research, the ecological quality of Karaj city's environment was evaluated and analyzed using Landsat series images in 2010 and 2020 by analyzing the main components of greenness, humidity, dryness and heat to determine four remote sensing ecological indicators. Remote sensing ecological indicators used in environmental quality extraction include LST, NDVI, NDBI and WET. The results showed that the quality of the environment of Karaj city has generally decreased from 2010 to 2022 and the average RSEI has decreased from 0.59 to 0.25, which shows the destruction of the environment of this city due to the expansion of its residential parts. Environmental changes in the study area are closely related to human activities in the form of spatial expansion of residential areas and development, which is caused by the immigration of the study area and its proximity to the Tehran. The index used in the present research can adequately reflect the spatial changes of environmental quality from different dimensions and is an effective method for comprehensive evaluation of environmental quality and ecological conditions in urban environments.
1. آقائی، مریم؛ خاوریان، حسن؛ مصطفیزاده، رئوف (1399). پیشبینی و آشکارسازی تغییرات کاربری اراضی با استفاده از مدل CA مارکوف و LCM در آبخیز کوزهتپراقی استان اردبیل. پژوهشهای آبخیزداری. 33 (3)، 91-107.
2. جهانداری، جاوید و ديگران (1401). اثرات توسعه شهری بر الگوهای مکانی، زمانی خدمت اکوسیستمی ذخیره کربن در حوزه آبخیز بندرعباس با نرمافزار InVEST. مدل سازی و مدیریت آب و خاک. 2 (4)، 91-106.
3. Abdullah, S.A. & Reza, M.I.H. (2011). Regional index of ecologicalogical integrity: A need for sustainable management of natural resources. Ecological Indicators. 11 (2), 220–229.
4. Baig, M.H.A. et al (2014). Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing, Letters. 5, 423–431. https://doi.org/10.1080/2150704X.2014.915434
5. Brehaut, L. & Danby, R.K. (2018). Inconsistent relationships between annual tree ring-widths and satellite-measured NDVI in a mountainous subarctic environment. Ecological Indicators. 91, 698–711.
6. Chakraborty, T. & Lee, X. (2019). A simplified urban-extent algorithm to characterize surface urban heat island son a global scale and examine vegetation control on their spatiotemporal variability. Int J Appl Earth Obs Geoinformation. 74, 269–280.
Coutts, A.M. et al (2016). Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing. 186, 637–651.
7. Crist, E. P. (1985). A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sensing of Environment. 17 (3), 301–306.
8. Dearing, J.A., De; Araujo Barbosa, C.C. & Atkinson, P.M. (2015). Remote sensing of ecosystem services: A systematic review. Ecological Indicators. 52, 430–443.
9. Ellis, E.C. et al (2006). Measuring long-term Ecologicalogical changes in densely populated landscapes using current and historical high-resolution imagery. Remote Sensing of Environment. 100 (4). 457–469.
10. Fan C. & Myint, S. (2014). A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landscape Urban Planning. 121, 117–128.
11. Guo, H.L. et al (2017). Ecologicalogical environment assessment based on remote sensing in Zhengzhou. J in Proc. Int. Conf. Energy Environment Mater Science Singapore. 14 (23), 15771. https://doi.org/10.3390/su142315771
12. Gillanders, N. S. et al (2008). Multi temporal remote sensing of landscape dynamics and pattern change: Describing natural and anthropogenic trends. Prog. Phys. Geography, Earth Environment. 32 (5), 503–528.
13. Hengliang, G. et al (2017). Ecological environment assessment based on Remote Sensing in Zhengzhou. Earth and Environment Science. 94, 012190.
14. Hu, X. & Xu, H. (2018). A new remote sensing index for assessing the spatial heterogeneity in urban ecologicalog quality: A case from Fuzhou City, China. Ecological Indicators. 89, 11–21.
15. Hao, R. et al (2017). Impacts of changes in climate and landscape pattern on ecosystem services. Science Total Environment. 579, 718–728.
16. Kang, H. et al (2018). A feasible method for the division of Ecologicalogical vulnerability and its driving forces in southern Shaanxi. Cleaner Production. 205, 619–628.
17. Kurda, K. P. (2022). The urban ecosystem services index as a new indicator for sustainable urban planning and human well-being in cities. Ecological Indicators. 144, 109532.
18. Karimi Firozjaei, m. et al (2020). Remotely sensed urban surface ecological index (RSUSEI): An analytical framework for assessing the surface ecological status in urban environments. Remote Sensing. 12 (12), 2029. https://doi.org/10.3390/rs12122029.
19. Meng, Q. et al (2018). Characterizing spatial and temporal trends of surface urban heat island effect in an urban mainbuilt-uparea: A12-year case study in Beijing, China. Remote Sensing of Environment. 204, 826–837.
20. Marzban, F.; Sodoudi, S. & Preusker R. (2018). The influence of land-cover type on the relationship between NDVI-LST and LST-Tair. Remote Sensing. 39 (5), 1377–1398.
21. Nichol, J. (2009). An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogrammetric Engineering & Remote Sensing. 5 (10), 547–556.
22. Ochoa-Gaona, S. et al (2010). A multi-criterion index for the evaluation of local tropical forest conditions in Mexico. Forest Ecology and Management. 260 (5), 618–627.
23. Pettorelli, N. et al (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution. 20 (9), 503-510.
24. Sean, P., Healey et al(2005). Comparison of tasseled cap-based landsat data structures for use in forest disturbance detection. Remote Sensing of Environment. 97 (3). 301-310.
25. Sekertekin, A.; Abdikan, S. & Marangoz, A.M. (2018). The acquisition of impervious surface area from Landsat 8 satellite sensor data using urban indices: A comparative analysis. Environment. Monitoring and Assessment. 190 (7), 381-392.
26. Sandholt, I.; Rasmussen, K. & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment. 79 (2), 213–224.
27. Schwarz, N. et al )2012(. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators an application for the city of Leipzig (Germany). Ecological Indicators. 18, 693–704.
28. Tiner, R.W. (2004). Remotely-sensed indicators for monitoring the general condition of “natural habitat” in watersheds: an application for Delaware’s Nanticoke River watershed. Ecological Iidicators. 4, 227-243.
29. Tang, D. et al (2015). Integrated ecosystem health assessment based on ecoexergy theory: A case study of the Jiangsu coastal area. Ecological Indicators. 48, 107–119.
30. Xu, H.Q. (2013). A remote sensing urban ecological index and its application. Acta Ecological Sinence. 33, 7853-7862.
31. Xu, H.Q. et al (2017). Development of a fine-scale discomfort index map and its application in measuring living environments using remotely sensed thermal infrared imagery. Energy Build. 150, 598–607.
32. Xu, H. & Hu, X. (2019). A new remote sensing index based on the pressurestate-response framework to assess regional ecological change. Environment Science Pollution Research. 26 (6), 5381–5393.
33. Xu, H. (2008). A new index for delineating built-up land features in satellite imagery. Remote Sensing. 29 (14), 4269–4276.
34. Xu, H. et al (2018). Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecological Indicators. 93, 730–740.
35. Willis, K.S. (2015). Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation. 182, 233–242.
36. Williams, M., et al (2009). Development and evaluation of a spatially-explicit index of Chesapeake Bay health. Mar. Pollut Bull. 59, 14–25.
36. White, D.C. et al (2016). A generalizable NDVI-based wetland delineation indicator for remote monitoring of groundwater flows in the Australian Great Artesian Basin. Ecological Indicators. 60, 1309–1320.
37. Wang, M. Y. & Xu, H. O. (2018). Temporal and spatial changes of urban impervious surface and its influence on urban ecological quality: A comparison between Shanghai and New York Applied Ecology. The Journal of Applied Ecology. 29 (11), 3735–3746.
38. Wang, H. et al (2022). A remote-sensing ecological index approach for restoration assessment of rare-earth elements mining. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2022/5335419.
39. Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. Photogrammetry and Remote Sensing. 64 (4), 335–344.
40. Yu, J. et al (2022). A remote sensing assessment index for urban ecological livability and its application. Geo-Spatial Information Science. 27 (2), 289-310.
41. Zhou, D. et al (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment. 152, 51–61.