شبیه سازی رشد و توسعه کالبدی شهرها با بکارگیری مدل سلولهای خودکار فازی(FCA) مطالعه موردی: شهر اهواز
محورهای موضوعی : برنامه ریزی شهریسعید زنگنه شهرکی 1 , مرتضی امیدی پور 2 , یوسف تازش 3 , آتنا معین مهر 4
1 - استادیار جغرافیا و برنامه ریزی شهری، دانشگاه تهران، ایران.
2 - دانشجوی دکتری سنجش از دور و GIS،دانشگاه تهران، ایران.
3 - دانشجوی دکتری جغرافیا و برنامه ریزی شهری، دانشگاه آزاد اسلامی، یاسوج، ایران
4 - دانشجوی دکتری جغرافیا و برنامه ریزی روستایی، دانشگاه تربیت مدرس، ایران
کلید واژه: مدلسازی, رشد شهری, سنجش از دور و GIS, سلولهای خودکار فازی,
چکیده مقاله :
استفاده از مدلهای کمی برای شبیهسازی رشد و توسعه فیزیکی شهرها به واسطه وجود عوامل مختلف و پیچیدگی ذاتی محیط شهری همواره با چالشها و عدم قطعیتهایی همراه است.پژوهش حاضر مدلی از توسعه شهری را بر مبنای اصول سلولهای خودکار و رهیافت منطق فازی ارائه نموده است.دراین راستا ابتدا مهمترین شاخصهای مؤثر بر رشدشهری و ساختار شبکهای شاخصها باروش دیماتل بدست آمده،سپس باکمک ساختار تهیه شده وزن هر شاخص با روش فرآیند تحلیل شبکه (ANP) محاسبه شده است.برای شبیهسازی رشد شهری در محدوده مورد مطالعه(شهر اهواز) برای سال 2020 از 3 تصویر ماهوارهای مربوط به سالهای 2003، 2007 و 2013 استفاده شده است.بعد از انجام عملیات پیشپردازش، طبقهبندی تصاویر برای هر سه دوره باروش حداکثر شباهت صورت گرفته است.برای بررسی صحت نقشهها در دو مرحله از شاخص کاپا استفاده شده،ابتدا نقشههای سالهای مبدا طبقهبندی و صحت آنها با واقعیت بررسی شد و پس آن برای شبیهسازی نقشه سالهای دیگراقدام شده است و مجددا صحت ارزیابی شده است.از آنجا که میزان صحت مدل برای دورههای دارای نقشه واقعیت قابل قبول ارزیابی شد، بنابراین برای شبیهسازی رشد شهری سال 2020 مدل رگرسیون خطی و ماتریس احتمالات تبدیل مورد استفاده قرار گرفته است.نتایج تحقیق نشان دهنده صحت قابل قبول مدل ارائه شده میباشد.همچنین مدل بکارگرفته شده در شبیهسازی شهری از واقع بینی بیشتری نسبت به مدل کلاسیک CA برخوردار بوده است.درسطح محدوده مورد مطالعه نیز نتایج گواه آن است که رشد و توسعه شهر اهواز در دورههای مختلف درجهت خاصی توسعه نیافته بلکه کاملا جسته و گریخته و درتمامی جهات صورت گرفته است.
This study is proposed a model of urban expansion based on cellular automata principles and fuzzy logic approach. The most effective indicators were first selected using the DEMATEL method. The weight of each indicator was then obtained with the help of the prepared structure using the Analytic Network Process (ANP). Three satellite images of 2003, 2007, and 2013 were used to simulate urban growth of Ahvaz in the year 2020. The selected base year was 2003. After performing preprocessing operations, the images were classified using the maximum likelihood method. The combination of fuzzy logic and the classic cellular automata model was made operational by defining the transition rules using the degrees of fuzzy membership. The Kappa index was employed in two stages to study accuracy of the images. The images of the base year were first classified and their accuracy was examined, and the accuracy of the simulated images with respect to reality was also investigated for the year 2007 and then simulation of the images of the other years was performed. Since the degree of accuracy of the model was considered acceptable, the linear regression model and the matrix of transition probabilities were employed for simulation in 2020. Results indicated the model enjoyed acceptable accuracy. It also yielded more realistic results in urban simulations compared to the classic CA method. Moreover, and growth and development of Ahvaz in different periods did not take place in any specific direction but rather was completely irregular and occurred in all directions.
1. آذر، عادل و فرجی، حجت (1387)، علم مدیریت فازی، تهران، انتشارات مرکز مطالعات و بهرهوری ایران.
2. آقاابراهیمی، بابک و همکاران(1387)،" ارزیابی چالشهای شرکتهای ایرانی در پروژههای نفت و گاز به روش” DEMATEL "، دوره 24، شماره 45،صفحه 121-129.
3. اصغربور، محمدجواد (1377)، تصمیمگیریهای چند معیاره. تهران، انتشارات دانشگاه تهران.
4. امینی فسخودی، عباس(1384)، کاربرد استنتاج منطق فازی در مطالعات برنامه ریزی و توسعه منطقه ای، شماره 17.
5. رضازاده، راضیه و میراحمدی، مهرداد(1388)؛ "مدل اتوماسیون سلولی، روشی نوین در شبیهسازی رشد شهری"، نشریه علمی پژوهشی فناوری آموزش، سال چهارم، جلد 4 ، شماره 1.
6. ضیائیان فیروزآبادی و همکاران(1388)،"سنجش از دور(RS)، سیستم اطلاعات جغرافیایی(GIS) و مدل سلولهای خودکار (CA) به عنوان ابزاری برای شبیهسازی تغیرات کاربری اراضی شهری"، مجله علوم محیطی سال هفتم، شماره اول.
7. عطایی، محمد(1389)، تصمیم گیری چند معیاره فازی، شاهرود، انتشارات دانشگاه صنعتی شاهرود.
8. فرجی سبکبار، حسنعلی و همکاران(1392)،" ارزیابی مکان استقرار شعب بانکها و مؤسسههای مالی و اعتباری منطقه 6 شهر تهران با استفاده از روش دیماتیل و فرآیند تحلیل شبکهای"، پژوهشهای جغرافیای انسانی، دوره 45، شماره 3.
9. قدسیپور، سید حسن (1385)، فرآیند تحلیل سلسله مراتبی تهران، انتشارات دانشگاه امیر کبیر تهران، چاپ پنجم.
10. مهندسین مشاور عرصه(1389)، طرح راهبردی توسعه و عمران شهر اهواز، سازمان مسکن و شهرسازی استان خوزستان، مرحله اول، مقطع دوم، جلد سوم.
11. Alig, R.J., 1986, Econometric Analysis of the Factors Influencing Forest Acreage Trends inthe Southeast, Forest Science, 32, 119–134
12. Batty, M., Longley, M., 1994, Urban Modeling in Computer-Graphic and GeographicInformation System Environments, Environment and Planning B, 19, 663–688
13. Batty, M. 1997. Cellular automata and urban form: a primer. Journal of the American Planning Association 63: 266–74.
14. Dietzel, C. and Clarke, K. C. 2006. The effect of disaggregating land use categories in cel- lular automata during model calibration and forecasting. Computers, Environment, and Urban Systems 30: 78–101.
15. Pauchard, A., Aguayo, M., Peña, E., Urrutia. R., 2006, Multiple Effects of Urbanization onthe Biodiversity of Developing Countries: The Case of a Fast-growingMetropolitan Area (Concepción, Chile), Biological Conservation, 127:272-281.
16. Singh, A. K. (2003) Modelling land use land cover changes using cellular automata in a geo-spatial environment. M.Sc Thesis, International institute for geo-information science and earth observation.
17. Sui, D. and Hui, Z., 2001, Modeling the Dynamics of Landscape Structure in Asia’s Emerging Desakota egions: a Case Study in Shenzhen, Landscape and Urban Planning 53.
18. White, R., Engelen, G. and Uljee, I. 1997. The use of constrained cellular automata for high- resolution modelling of urban land-use dynamics. Environment and Planning B 24: 323–43
19. Wolfram, S. 1994. Cellular automata and complexity: collected papers. Reading, MA: Addison-Wesley.
20. Zadeh L.A.,1965, Fuzzy sets". Information and Control 8: 338–353.
_||_