طراحی شهری حساس به آب از منظر اجتماعی با بررسی گروداران در جغرافیای شهری و تغییرات جایگاه آنها در گذر زمان؛ مطالعه موردی: حوضه آبریز کن در غرب تهران
محورهای موضوعی : کالبدیهدی شریفیان 1 , مصطفی بهزادفر 2 , محسن فیضی 3
1 - دانشجوی دکتری شهر سازی، دانشگاه علم و صنعت، تهران،ایران
2 - استاد، دانشکده معماری و شهرسازی؛ دانشگاه علم و صنعت، تهران، ایران
3 - استاد دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ، تهران،ایران
کلید واژه: گروداران نهادی, تحلیل گروداران, تحلیل شبکه اجتماعی, طراحی شهری حساس به آب, حل تعارض,
چکیده مقاله :
توسعه شهری و افت تراز آب زیرزمینی متقابلاً تهدیدکننده یکدیگر هستند. هدف پژوهش، شناسایی جایگاه گروداران مدیریت منابع آب و توسعه شهری از منظر اجتماعی و نقش طراحی شهری حساس به آب ، در حل تعارضهای بیننهادی است. نظر به فرونشست جنوب غرب تهران (سالانه حدود 25 سانتیمتر) ناشی از افت کمی آب زیرزمینی، محدوده شهری حوضه آبریز کن مورد پژوهش قرار گرفت. جامعه آماری شامل تمام گروداران نهادی توسعهای و حفاظتی مؤثر در مدیریت شهری و آب زیرزمینی در این حوضه است و با روش نمونهگیری غیر احتمالی گلوله برفی (نمایی با تمیز)، 10 گرودار نهادی کلیدی مؤثر شناسایی شد. با روش تحلیل گروداران و با پرسشنامه و مقیاس لیکرت (5-1)، جایگاه گروداران و با روش تحلیل شبکه اجتماعی در نرمافزار Gephi، نوع و شدت روابط بیننهادی برآورد شد. در این پژوهش بازتعریف طراحی شهری حساس به آب از منظر اجتماعی بهعنوان ابزار حل اختلاف، اولین بار مطرح گردید. طبق نتایج تحلیل گروداران، پارامترهای قدرت و تمایل دو گرودار حفاظتی آب منطقهای (4.026 و 4.28) و توسعهای شهرداری (3.42 و 3.78)، بالاتر بوده و نزدیکی این دو نهاد با مطلوبیتهای متفاوت، بیانگر زمینه تعارض بالقوه است. نتایج تحلیل شبکه اجتماعی نشان داد در شبکه همکاری، بیشترین و کمترین درجه را به ترتیب نهادهای آب و فاضلاب و شهرداری دارند که بیانگر تعامل کم نهادهای توسعهای، بهویژه شهرداری است. در شبکه تعارض نیز نهادهای آب منطقهای و شهرداری بیشترین درجه را دارند.
Abdolhay, A., (2018). Developing a conflict resolution model for water allocation in urban areas considering the concept of reinforcement learning. M.Sc. Thesis (In Persian). University of Tehran, Tehran, Iran.
Ahmadi, A., Kerachian, R., Emami-Skardi, M.J., Abdolhay, A., (2020). A stakeholder-based decision support system to manage water resources. J. Hydrol. 589, 125138. https://doi.org/10.1016/j.jhydrol.2020.125138
Ahmadi, A., Kerachian, R., Rahimi, R., Emami Skardi, M.J., )2019(. Comparing and combining Social Network Analysis and Stakeholder Analysis for natural resource governance. Environ. Dev. https://doi.org/10.1016/j.envdev.2019.07.001
Ashraf, S., Nazemi, A., Aghakouchak, A., (2021). Anthropogenic drought dominates groundwater depletion in Iran. www.nature.com/scientificreports. 1–10. https://doi.org/10.1038/s41598-021-88522-y
Bastian, M., Heymann, S., and Mathieu, J., (2009). Gephi: an open source software for exploring and manipulating networks. AAAI Publications, Third International AAAI Conference on Weblogs and Social Media.
Bodin, Ö., & Crona, B.I., (2008). Management of natural resources at the community level: exploring the role of social capital and leadership in a rural fishing community. World Dev. 36 (12), 2763–2779.
Bodin, Ö., Crona, B., Ernstson, H., (2006). Social networks in natural resource management: what is there to learn from a structural perspective? Ecol. Soc. 11 (2).
Borgatti, S.P., Everett, M.G., and Freeman, L.C., (2002). UCINET 6 for Windows: Software for social network analysis (Version 6.102). Harvard, ma Anal. Technol.
Cabaj, A., Chen, T., Haider, T., Blanca, J., Halloran, K., Georg, H., Shang, C., Shival, H., Regin, S., Tiawari, S., and Trusell, R., (2012). Review of needs to better management urban water. In book: Global Trends & Challenges in Water Science, research and Management (pp.11.18) Publisher: IAWP, Editors: Li H.
Darbandsari, P., Kerachian, R., and Malakpour-Estalaki, S., (2017). An agent-based behavioral simulation model for residential water demand management: the case-study of Tehran, Iran. Simul. Modell. Pract. Theory 78, 51–72. https://doi.org/10.1016/j. simpat.2017.08.006.
de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. (2019). Environmental flow limits to global groundwater pumping. Nature 574, 90–94.
Emami-Skardi, M. J., Kerachian, R., and Abdolhay, A. (2020). Water and Treated Wastewater Allocation in Urban Areas Considering Social Attachments. Journal of Hydrology, 124757. https://doi.org/10.1016/j.jhydrol.2020.124757
Emami-Skardi, M.J., (2020). Water and Reclaimed Wastewater Allocation in Urban Areas with Emphasis on Correlated Equilibrium and Social Optimality. PhD dissertation. (In Persian). University of Tehran, Tehran, Iran.
Emami-Skardi, M.J., Momenzadeh, N., Kerachian, R., (2021). Social learning diffusion and influential stakeholders identification in socio-hydrological environments. J. Hydrol. 599, 126337. https://doi.org/10.1016/j.jhydrol.2021.126337
Emamjomehzadeh, O., Kerachian, R., Emami-Skardi, M.J., Momeni, M., (2023). Combining urban metabolism and reinforcement learning concepts for sustainable water resources management: A nexus approach. J. Environ. Manage. 329, 117046. https://doi.org/10.1016/j.jenvman.2022.117046
Ernstson, H., Barthel, S., Andersson, E., Borgström, S.T., (2010). Scale-crossing brokers and network governance of urban ecosystem services: the case of Stockholm. Ecol. Soc. 15 (4).
Eyni, A., Emami-Skardi, M.J., Kerachian, R., (2021). A regret-based behavioral model for shared water resources management: Application of the correlated equilibrium concept. Sci. Total Environ. 759, 143892. https://doi.org/10.1016/j.scitotenv.2020.143892
Grimble, R., (1998). Stakeholder methodologies in natural resource. Socio-Economic Methodologies Best Practice Guidelines, 12. https://doi.org/https://doi-org.ezproxy.otago.ac.nz/10.1007/s10862-018-9649-7.
Grimble, R., Wellard, K., (1997). Stakeholder methodologies in natural resource management: a review of principles, contexts, experiences and opportunities. Agric.Syst. 55 (2), 173–193. https://doi.org/10.1016/S0308-521X(97)00006-1.
Haak, D.M., Fath, B.D., Forbes, V.E., Martin, D.R., Pope, K.L., (2017). Coupling ecological and social network models to assess “transmission” and “contagion” of an aquatic invasive species. J. Environ. Manag. 190, 243–251.
Haghshenas-Haghighi, M. & Motagh, M. (2019). Ground surface response to continuous compaction of aquifer system in Tehran, Iran: results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 221, 534–550.
Jahanbani, M.A., Ahmadi, M., and Behzadfar, M., (2021). Identifying and prioritizing the factors affecting the strengthening of collective participation in the implementation of urban development projects (Case study: Tehran metropolis). Quarterly of New Attitudes in Human Geography (Summer) 2021, Vol. 13. No 3.
Jiménez, B., Hirschmann, G., Sommer, R., (2011). Review of Needs to Better Management Urban Water, in: On the Water Front 2011.
Khatibi, S.M.R., Kavousi, M., and Mohajeri, N., (2020). Focusing on the FGD technique in strategic planning to achieve environmental sustainability. The first national conference on sustainable housing, Tehran.
Lauber, T.B., Decker, D.J., Knuth, B.A., (2008). Social networks and community-based natural resource management. Environ. Manag. 42 (4), 677–687.
Li, C., Peng, C., Chiang, P., Cai, Y., Wang, X., Yang, Z.. (2018). Mechanisms and Applications of Green Infrastructure Practices for Stormwater Control: A Review. Journal of Hydrology, doi: https:// doi.org/10.1016/j.jhydrol.2018.10.074
Luzi, S., Abdelmoghny Hamouda, M., Sigrist, F., Tauchnitz, E., (2008). Water policy networks in Egypt and Ethiopia. J. Environ. Dev. 17 (3), 238–268.
Mahmoudpour, M., Khamehchiyan, M., Nikudel, M. R., & Ghassemi, M. R. (2013). Characterization of regional land subsidence induced by groundwater withdrawals in Tehran, Iran. JGeope, 3(2), 49–62.
Mandarano, L.A., (2009). Social network analysis of social capital in collaborative planning. Soc. Nat. Resour. 22 (3), 245–260
Moradikian, S., Emami-Skardi, M.J., Kerachian, R., (2022). A distributed constraint multi-agent model for water and reclaimed wastewater allocation in urban areas: Application of a modified ADOPT algorithm. J. Environ. Manage. 317, 115446. https://doi.org/10.1016/j.jenvman.2022.115446
Moravej, Mojtaba; Renouf, Marguerite A; Lam,Ka Leung; Kenway, Steven J. & Urich, Christian. (2020). “Site-scale Urban Water Mass Balance Assessment (SUWMBA) to quantify water performance of urban design-technology-environment configurations”, Water Research, Volume 188, 116477, ISSN 0043-1354, ISSN 0043-1354
Navarro-Navarro, L.A., Moreno-Vazquez, J.L., Scott, C.A., (2017). Social networks for management of water scarcity: evidence from the San Miguel Watershed, Sonora, Mexico. Water Altern. (WaA) 10 (1), 41.
Ogada, J.O., Krhoda, G.O., Van Der Veen, A., Marani, M., van Oel, P.R., (2017). Managing resources through stakeholder networks: collaborative water governance for Lake Naivasha basin, Kenya. Water Int. 42 (3), 271–290
Pahl-Wostl, C., (2002). Towards sustainability in the water sector–The importance of human actors and processes of social learning. Aquat. Sci. 64 (4), 394–411.
Paletto, A., Hamunen, K., De Meo, I., (2015). Social network analysis to support stakeholder analysis in participatory forest planning. Soc. Nat. Resour. 28 (10), 1108–1125.
Prasad, Y. S. & Rao, B. V. (2018). Groundwater depletion and groundwater balance studies of Kandivalasa River Sub Basin, Vizianagaram District, Andhra Pradesh, India. Groundw. Sustain. Dev. 6, 71–78.
Reed, M.S., (2008). Stakeholder participation for environmental management: a literature review. Biol. Conserv. 141 (10), 2417–2431. https://doi.org/10.1016/j. biocon.2008.07.014.
Reed, M.S., Graves, A., Dandy, N., Posthumus, H., Hubacek, K., Morris, J., Prell, C., Quinn, C.H., Stringer, L.C., )2009(. Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manage. 90 (5), 1933–1949. https://doi.org/10.1016/j.jenvman.2009.01.001.
Rogers, B. C., Dunn, G., Hammer, K., Novalia, W., de Haan, F. J., Brown, L., … Chesterfield, C. (2020). Water Sensitive Cities Index: A diagnostic tool to assess water sensitivity and guide management actions. Water Research, 186, 116411. doi:10.1016/j.watres.2020.116411
Schneider, M., Scholz, J., Lubell, M., Mindruta, D., Edwardsen, M., (2003). Building consensual institutions: networks and the national estuary program. Am. J. Pol. Sci. 47 (1), 143–158.
Sharifian, H., Behzadfar, M., Faizi, M., (2022). Urban Development and Groundwater Depletion with Emphasis on Water-Sensitive Urban Design Approach. Urban Plan. Knowl. 6, 139–155. https://doi.org/10.22124/upk.2022.19578.1639
Sharifian, H., Emami-Skardi, M.J., Behzadfar, M., Faizi, M., (2022). Water sensitive urban design (WSUD) approach for mitigating groundwater depletion in urban geography; through the lens of stakeholder and social network analysis. Water Supply 22, 5833–5852. https://doi.org/10.2166/ws.2022.206
Suter, J. F., Rouhi Rad, M., Manning, D. T., Goemans, C. & Sanderson, M. R. (2019). Depletion, climate, and the incremental value of groundwater. Resour. Energy Econ. https://doi.org/10.1016/j.reseneeco.2019.101143
Tucci, C.E.M. (2017). Urbanization and Water Resources. https://doi.org/https://doi.org/10.1007/978-3-319-41372-3_7
United Nations. 2012. World urbanization prospects, the 2011 revision. Department of Economic and Social Affairs. Population Division. New York, USA: United Nations.
Xu, Z. Yao, L. & Chen, X. (2020). Urban water supply system optimization and planning: Bi-objective optimization and system dynamics methods. Computers and Industrial Engineering, 142(May 2019), 106373.https://doi.org/10.1016/j.cie.2020.106373
Yamaki, K., (2017). Applying social network analysis to stakeholder analysis in Japan's natural resource governance: two endangered species conservation activity cases. J. For. Res. 22 (2), 83–90.
Yang, R.J., (2014). An investigation of stakeholder analysis in urban development projects: empirical or rationalistic perspectives. Int. J. Proj. Manag. 32 (5), 838–849.