مقایسه هوش پسر و دختر بر ابعاد کارآمدی خانواده
محورهای موضوعی : سلامت نوجوانان
علی رسولی فشتمی
1
,
تورج هاشمی نصرت آباد
2
*
,
آذر کیامرثی
3
,
عذرا غفاری
4
1 - . دانشجوی دکتری تخصصی روانشناسی تربیتی واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران rasouli5334@yahoo.com
2 - نویسنده مسئول، استاد تمام گروه روانشناسی دانشگاه تبریز، ایران (نویسنده مسئول) tourajhashemi46@tabrizu.ac.ir
3 - استادیار گروه روانشناسی واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران a.kiamarsi52@gmail.com
4 - استادیار گروه روانشناسی واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران azra.ghaffari@yahoo.com
کلید واژه: تست هوش ریون, خانواده, دانش¬آموز, دختر و پسر,
چکیده مقاله :
چکیده مقدمه: آزمون هوشی ماتریس¬های پیش¬رونده ریون از آزمون¬های معتبر هوشی است که به منظور سنجش و اندازه-گیری هوش کلی استفاده می شود. این پژوهش جهت مقایسه هوش عمومی دانش¬آموزان دختر و پسر بر ابعاد کارآمدی خانواده و بر اساس هوش ریون کودکان انجام شده است. روش پژوهش: این پژوهش از نوع علی¬مقایسه ای و جامعه آماری کلیه دانش¬آموزان ابتدایی در سال تحصیلی 1400- 1399 بود. نمونه پژوهش 1643دانش¬آموز ابتدایی (808 نفر پسر و 835 نفر دختر) بود که با روش نمونه-گیری تصادفی خوشه¬ای از دو منطقه برخوردار و نیمه برخوردار انتخاب گردیدند. در این پژوهش از آزمون ماتریس-های پیشرونده رنگی ریون کودکان و بخش غیر¬کلامی آزمون استانفورد بینه ویراست 5 برای جمع¬آوری داده¬ها استفاده شد. داده¬های پژوهش با آزمون t مستقل و تحلیل واریانس چند راهه تجزیه و تحلیل شدند. یافته¬ها: یافته¬ها نشان داد که بین هوش دختران و پسران در پایه¬های اول، دوم، سوم، چهارم و ششم تفاوت معنا-داری وجود ندارد اما تفاوت هوشی بین دختران و پسران پایه پنجم، با برتری پسران معنادار بود. هم¬چنین تفاوت معناداری بین میانگین نمره کل هوش دختران و پسران در پایه¬های تحصیلی وجود داشت. به عبارتی نمرات هوشی دانش¬آموزان در پایه¬های مختلف تفاوت معناداری داشت و با افزایش پایه که سن نیز افزایش پیدا می¬کرد، هوش نیز افزایش می¬یافت. نتیجه¬گیری: با بررسی پیشینه تحقیق مشخص شد که عوامل اجتماعی بویژه، خانواده می¬تواند تاثیری زیادی بر کارکردهای هوشی داشته باشد
© 2020 The Author(s). This work is published by family and health as an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited. Abstract Introduction: Raven's Progressive Matrices Intelligence Quotient (IQ) test is one of the valid intelligence tests that is used to measure general intelligence. This research was conducted to compare the general intelligence of male and female students on the dimensions of family efficiency and on the basis of children's Raven intelligence. Methods: The research method was causal-comparative and the statistical population was all elementary school students in Rasht city in the academic year 2020-2021. The sample of the study was 1643 elementary students (808 boys and 835 girls), who were selected by cluster random sampling from two privileged and semi-privileged areas. In this study, the children's Raven color matrix test and the non-verbal part of the Stanford Binet version 5 test were used to collect data. Research data were analyzed by independent t-test and multivariate analysis of variance. Results: The results showed that there was no significant difference between the intelligence of girls and boys in the first, second, third, fourth and sixth grades, but the difference in intelligence between girls and boys in the fifth grade was significant, with the superiority of boys. There was also a significant difference between the mean total score of intelligence of girls and boys in educational levels. In other words, there was a significant difference in the intelligence scores of the students in different grades, and as the grade increased, the age also increased, so did the intelligence. Conclusion: By examining the background of the research, it was found that social factors, especially the family, could have a great impact on intellectual functions.
1. Guralnick M.J. Early intervention for children with intellectual disabilities: An update. Journal of Applied Research in Intellectual Disabilities. 2017; 30(2): 211-29.
https://doi.org/10.1111/j.1468-3148.2005.00270.x
2. Harding JF, Morris PA, Hughes D. The relationship between maternal education and children's academic outcomes: A theoretical framework. Journal of Marriage and Family. 2015; 77 (1): 60-67. https://doi.org/10.1111/jomf.12156
3. Passareli-Carrazzoni P, Pereira-Lima K, Loureiro SR. Children’s working memory: Maternal and child sociodemographic, cognitive, and mental health predictors. Psychology & Neuroscience. 2018;11(2):146. https://doi.org/10.1037/pne0000122
4. Trzaskowski M, Harlaar N, Arden R, Krapohl E, Rimfeld K, McMillan A, et al. Genetic influence on family socioeconomic status and children's intelligence. Intelligence. 2014; 42:83-88. https://doi.org/10.1016/j.intell.2013.11.002
5. Geary DC. Male, female: The evolution of human sex differences: American Psychological Association. 2010. https://doi.org/10.1037/12072-000
6. Miller DI, Halpern DF. The new science of cognitive sex differences. Trends in cognitive sciences. 2014;18(1):37-45. https://doi.org/10.1016/j.tics.2013.10.011
7. Deary IJ, Strand S, Smith P, Fernandes C. Intelligence and educational achievement. Intelligence. 2007;35(1):13-21. https://doi.org/10.1016/j.intell.2006.02.001
8. Strenze T. Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence. 2007; 35(5):401-426. https://doi.org/10.1016/j.intell.2006.09.004
9. Schmidt FL, Hunter J. General mental ability in the world of work: occupational attainment and job performance. Journal of personality and social psychology. 2004;86(1):162. https://doi.org/10.1037/0022-3514.86.1.162
10. Carter JL, Richards M, Hotopf M, Hatch SL. The roles of non-cognitive and cognitive skills in the life course development of adult health inequalities. Social Science & Medicine. 2019; 232:190-198. https://doi.org/10.1016/j.socscimed.2019.04.041
11. Backhouse EV, McHutchison CA, Cvoro V, Shenkin SD, Wardlaw JM. Cognitive ability, education and socioeconomic status in childhood and risk of post-stroke depression in later life: a systematic review and meta-analysis. PloS one. 2018;13(7):e0200525. https://doi.org/10.137/journal.pone.0200525
12. Duncan GJ, Magnuson K. Socioeconomic status and cognitive functioning: moving from correlation to causation. Wiley Interdisciplinary Reviews: Cognitive Science. 2012; 3(3):377-386. https://doi.org/10.1002/wcs.1176
13. Hernandez DJ, Napierala JS. Mother's Education and Children's Outcomes: How Dual-Generation Programs Offer Increased Opportunities for America's Families. Disparities among America's Children. No. 2. Foundation for Child Development. 2014.
14. Rindermann H, Ceci SJ. Parents’ education is more important than their wealth in shaping their children’s intelligence: Results of 19 samples in seven countries at different developmental levels. Journal for the Education of the Gifted. 2018; 41(4):298-326.
https://doi.org/10.1177/0162353218799481
15. Halpern DF, Benbow CP, Geary DC, Gur RC, Hyde JS, Gernsbacher MA. The science of sex differences in science and mathematics. Psychological science in the public interest. 2007; 8(1). 1-15. https://journals.sagepub.com/doi/pdf/10.1111/j.1529-1006.2007.00032.x
16. Waschl N, Burns NR. Sex differences in inductive reasoning: A research synthesis using meta-analytic techniques. Personality and Individual Differences. 2020; 164:109959.
https://doi.org/10.1016/j.paid.2020.109959
17. Flores-Mendoza C, Widaman KF, Rindermann H, Primi R, Mansur-Alves M, Pena CC. Cognitive sex differences in reasoning tasks: Evidence from Brazilian samples of educational settings. Intelligence. 2013;41(1):70-84. https://doi.org/10.1016/j.intell.2012.11.002
18. Jackson DN, Rushton JP. Males have greater g: Sex differences in general mental ability from 100,000 17-to 18-year-olds on the Scholastic Assessment Test. Intelligence. 2006; 34(5):479-486. https://doi.org/10.1016/j.intell.2006.03.005
19. Arden R, Plomin R. Sex differences in variance of intelligence across childhood. Personality and Individual Differences. 2006; 41(1):39-48. https://doi.org/10.1016/j.paid.2005.11.027
20. Reynolds MR, Keith TZ, Ridley KP, Patel PG. Sex differences in latent general and broad cognitive abilities for children and youth: Evidence from higher-order MG-MACS and MIMIC models. Intelligence. 2008; 36(3):236-260. https://doi.org/10.1016/j.intell.2007.06.003
21. Frick A, Ferrara K, Newcombe NS. Using a touch screen paradigm to assess the development of mental rotation between 3½ and 5½ years of age. Cognitive processing. 2013;14:117-127. https://link.springer.com/article/10.1007/s10339-012-0534-0
22. Palejwala MH, Fine JG. Gender differences in latent cognitive abilities in children aged 2 to 7. Intelligence. 2015;48:96-108. https://doi.org/10.1016/j.intell.2014.11.004.
23. Keith TZ, Reynolds MR, Roberts LG, Winter AL, Austin CA. Sex differences in latent cognitive abilities ages 5 to 17: Evidence from the Differential Ability Scales—Second Edition. Intelligence. 2011; 39(5):389-404. https://doi.org/10.1016/j.intell.2011.06.008
24. Lutchmaya S, Baron-Cohen S, Raggatt P. Foetal testosterone and vocabulary size in 18-and 24-month-old infants. Infant Behavior and Development. 2001; 24(4):418-424.
https://doi.org/10.1016/S0163-6383(02)00087-5
25. Zambrana IM, Ystrom E, Pons F. Impact of gender, maternal education, and birth order on the development of language comprehension: A longitudinal study from 18 to 36 months of age. Journal of Developmental & Behavioral Pediatrics. 2012; 33(2):146-155.
doi: 10.1097/DBP.0b013e31823d4f83.
26. Herlitz A, Reuterskiöld L, Lovén J, Thilers PP, Rehnman J. Cognitive sex differences are not magnified as a function of age, sex hormones, or puberty development during early adolescence. Developmental neuropsychology. 2013; 38(3):167-179.
https://doi.org/10.1080/87565641.2012.759580
27. Lynn R. Sex differences in intelligence and brain size: A developmental theory. intelligence. 1999; 27(1) 1-1. https://scholar.google.com/scholar?hl=fa&as_sdt.
28. Arden R, Plomin R. Sex differences in variance of intelligence across childhood. Personality and Individual Differences. 2006; 41(1):39-48. https://doi.org/10.1016/j.paid.2005.11.027
30. Lynn R, Kanazawa S. A longitudinal study of sex differences in intelligence at ages 7, 11 and 16 years. Personality and Individual Differences. 2011;51(3):321-324.
https://doi.org/10.1016/j.paid.2011.02.028
31. Savage-McGlynn E. Sex differences in intelligence in younger and older participants of the Raven’s Standard Progressive Matrices Plus. Personality and Individual Differences. 2012;53(2):137-141. https://doi.org/10.1016/j.paid.2011.06.013
32. Kpolovie P. Intelligence and academic achievement: A longitudinal survey. International Journal of Recent Scientific Research. 2016;7(5):11423-11439.
https://scholar.google.com/scholar?hl=fa&as_sdt
33. Tias PA, Istamar S, Atmoko A, Corebima AD. The contribution of intelligence quotient (IQ) on biology academic achievement of senior high school students in Medan, Indonesia. International Journal of Educational Policy Research and Review. 2015; 2(10):141-147. http://dx.doi.org/10.15739/IJEPRR.023
34. Adeboye M, Katibi O, Adegboye O, Ojuawo A, Afolabi J, Buhari O, et al. Intelligence Quotient of Neurologically Impaired Children Attending Neurology Clinic in a Nigerian Tertiary Institution. 2018. https://uilspace.unilorin.edu.ng/handle/20.500.12484/9083
35 Naderi H, Abdullah R, Aizan HT, Sharir J. Intelligence and academic achievement: an investigation of gender differences. Life science journal. 2010: 7 (1),83-87.
http://www.sciencepub.net
36. Furnham A, Buchanan T. Personality, gender and self-perceived intelligence. Personality and individual differences. 2005; 39(3):543-555. https://doi.org/10.1016/j.paid.2005.02.011
37. Sluis S, Posthuma D, Dolan C, Geus E, Colom R, Boomsma D. Sex differences on the Dutch WAIS-III. Dermatol Int. 2006; 34:273-289. https://doi.org/10.1016/j.intell.2005.08.002
38. Giofrè D, Allen K, Toffalini E, Caviola S. The Impasse on Gender Differences in Intelligence: a Meta-Analysis on WISC Batteries. Educational Psychology Review. 2022; 1-26. https://link.springer.com/article/10.1007/s10648-022-09705-1
39. Colom R, Garcı́a-López O. Sex differences in fluid intelligence among high school graduates. Personality and Individual differences. 2002; 32(3):445-451.
https://doi.org/10.1016/S0191-8869(01)00040-X
40. Raven J.C., Court JH. Raven's progressive matrices and vocabulary scales: Oxford pyschologists Press Oxford; 1998. https://scholar.google.com/scholar?hl=
41. Cotton S.M., Kiely P.M., Crewther D.P., Thomson B, Laycock R, Crewther SG. A normative and reliability study for the Raven’s Coloured Progressive Matrices for primary school aged children from Victoria, Australia. Personality and individual differences. 2005; 39(3):647-659. https://doi.org/10.1016/j.paid.2005.02.015
42. Tzuriel D. Dynamic assessment of young children. Dynamic assessment of young children: Springer. 2001: 63-75.
https://books.google.com/books?hl=fa&lr=&id=UOMqoEyV0BoC&oi=
43. Linn M.C., Petersen AC. Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development. 1985:1479-1498. https://doi.org/10.2307/1130467
44. Voyer D, Voyer S, Bryden M.P. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological bulletin. 1995;117(2):250. https://psycnet.apa.org/buy/1995-20087-001
45. Halpern D.F. Sex differences in cognitive abilities: Psychology press; 2013. https://books.google.com/books?hl=fa&lr=&id=ocl5AgAAQBAJ&oi
46. Wood W, Eagly AH. Biosocial construction of sex differences and similarities in behavior. Advances in experimental social psychology. 46: Elsevier; 2012. p. 55-123.
https://doi.org/10.1016/B978-0-12-394281-4.00002-7
47. Waber D.P. Sex differences in cognition: A function of maturation rate? Science. 1976;192(4239): 572-4. https://doi.org/10.1126/science.1257795