بررسی تصفیه پسابهای حاوی آنتیبیوتیک توسط روش نانوفتوکاتالیزوری
محورهای موضوعی : سایرعالیه محمدی 1 , شقایق لاله 2 , محمدرضا دوستی 3
1 - گروه عمران، دانشکده فنی و مهندسی، دانشگاه بیرجند، بیرجند، ایران
2 - گروه عمران، دانشکده فنی و مهندسی، دانشگاه بیرجند، بیرجند، ایران
3 - گروه عمران، دانشکده فنی و مهندسی، دانشگاه بیرجند، بیرجند، ایران
کلید واژه: تصفیه آب و فاضلاب, نانو فتوکاتالیزور, آنتی بیوتیک, اکسیداسیون پیشرفته,
چکیده مقاله :
امروزه همگام با پیشرفت صنعت، آلودگی آب نیز رو به افزایش است. آلاینده ها از مسیرهای گوناگون به منابع زیرزمینی و روان آب های سطحی وارد می شوند و به عنوان تهدیدی بالقوه برای سلامت انسان و سایر جانداران در چرخه حیات قرار می گیرند. با اینکه تاکنون روش های مختلفی برای تصفیه آب و فاضلاب بکار رفته است اما اغلب این روش ها برای حذف بسیاری از آلاینده های آلی پایدار از جمله رنگ ها، داروها، حلال ها، آفت کش ها و غیره کارایی لازم را ندارند. آنتی بیوتیک ها از جمله آلاینده های آلی پایدار هستند که پس از مصرف به ندرت در بدن به طور کامل متابولیزه می شوند و 30 تا 90 درصد آن ها پس از دفع به صورت آلاینده های فعال در محیط زیست باقی می مانند. از این رو استفاده از روش های نوین نظیر فرایندهای فتوکاتالیزوری برای تصفیه آنتی بیوتیک ها مورد توجه پژوهشگران قرار گرفته است. با توجه به زمان کوتاه تولید نانوفتوکاتالیزور ها، قابلیت بازیافت و امکان استفاده مجدد از آن، تشکیل محصولات بی ضرر در طی واکنش، صرفه اقتصادی و سازگاری با محیط زیست، استفاده از نانو فتوکاتالیزور های نیمه هادی ناهمگن به عنوان یکی از فرایندهای اکسیداسیون پیشرفته، می تواند روشی موثر و کارآمد برای مقابله با آلودگی های زیست محیطی ناشی از آنتی بیوتیک ها باشد. در این مطالعه، ضمن معرفی روش اکسیداسیون پیشرفته، به نحوه به کارگیری نانو فتوکاتالیزور های ناهمگن، بررسی تأثیر عوامل عملیاتی مختلف واکنش فتوکاتالیزوری در تصفیه آب و فاضلاب حاوی آنتی بیوتیک ها و مطالعات مختلف و تحقیقات پبشین انجام شده در این زمینه پرداخته شده است.
Today, along with the progress of the industry, water pollution is also increasing. Pollutants enter the underground sources and surface waters from various routes and become a potential threat to human health and other organisms in the life cycle. Although various methods have been used to purify water and wastewater, most of these methods are not effective enough to remove many persistent organic pollutants, such as dyes, drugs, solvents, pesticides, etc. Antibiotics are among persistent organic pollutants that are rarely completely metabolized in the body after consumption, and 30 to 90% of them remain as active pollutants in the environment after elimination. Therefore, the use of new methods such as photocatalytic processes for antibiotics treatment have attracted the attention of researchers. The use of heterogeneous semiconductor nano photocatalysts as one of the advanced oxidation processes is considered due to their advantages including short-time procedure for synthesis of nano photocatalysts, nano photocatalyst ability to recycle and reuse, the formation of harmless products during the reaction, economic efficiency and compatibility with the environment. So, this approach can be an effective and efficient way to deal with environmental pollution caused by antibiotics. In this article, in addition to introducing the advanced oxidation method, recent studies on using of heterogeneous nano photocatalysts and most effective factors on photocatalytic reaction in water and wastewater treatment containing antibiotics have been reviewed.
1. B. H. Nassima Belhouchet, H. Chenchouni, J. Photochem. Photobiol. A. 372 , 196-205 (2018).
2. M. N. M Taheran, Sk. Brar, Environmental Nanotechnology. Monit Manage 10 ,122-126 (2018).
3. A. H. P. Negin Nasseh, M. Esmati, N. Daglioglu, A. Asadi, H. Rajati, F. Khodadoost, J. Mol. Liq., 301 , 112434 (2019).
4. E. B. Mahdi Farzadkia, A. Esrafili, J. Tang , M. Shirzad, J. Environ. Health Sci. Eng., 13, 1-8 (2015).
5. H. E. Farid Frozanfar Art and Architecture Studies 12 , 157-168 (2016).
6. K. F. Chao Ding, Y. Pan, J. Liu, H. Deng , J. Shi, Catalysts 10 , 1097 (2020).
7. S. M. B. Nader Beheshti, Eng. Sci. Technol. (2016).
8. F. T. Alireza Nasiri, M. Faraji, Methods X 6, 1557-1563 (2019).
9. T. R. Crittenden Jc , H. Dw, Water Treatment Principles and Design 2, 36-47 (2005).
10. L. E. Auria Maurizio , R. Racioppi, J. Hazard. Mater., 164 , 32-38 (2009).
11. N. R. C. Indrajit, V. Bagal, Int. J. Hydrog. Energy., 44 , 21351-21378 (2019).
12. S. R. A.-A. Hyeok Choi, Sustainability Science and Engineering 2 , 229-254 (2010).
13. W. S. Shihong Xu, Sci. Technol. Adv. Mate., 8, pp 40-46 (2007) 40.
14. B. J. Meng Nan Chong, Chris Saint, Water Research 44 , 2997-3027 (2010).
15. R. Hasandost, Chemistery Academy, Tabriz University2017.
16. A. Mohammadi, M. Dosti, S. Sobhani, Environ. Sci. Pollut. Res. 29 , 65043-65060 (2022).
17. P. W. Muhan Cao, Y. Ao, C. Wang, J. Colloid Interface Sci., 467 , 129-139 (2016).
18. C. P. P. Frank J Owens, Introduction to nanotechnology, John Wiley & Sons, Inc2003.
19. R. V. Vivek Polshettiwar, Green Chem., 12 , 743-754 (2010).
20. A. H. M. M.Ahmadi, Environ. Eng. Manag J., 15 , 733-740 (2016).
21. G. M. Z. P. Xu, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z., C. H. Wei, G.X. Xie, Sci Total Environ., 424 , 1-10 (2012).
22. W. Liu, China Particulogy 3, 383-394 (2005).
23. A. Eibner, Chem-ZTG 35, 753-755 (1911).
24. C. Ram, Department of Biotechnology & Environmental Sciences 13 , 32-43 (2008).
25. P.-S. Y. Penghua Wang , Teik-Thye Lim, Appl. Catal. A: General 399 , 252–261 (2011).
26. J. F. Xingyun Hu, Ind. Eng. Chem. Res., 53 , 14623-14632 (2014).
27. F. M. Lamine Aoudjit, Int. J. Chem. Eng., 6 , 345-365 (2015).
28. E. B. Davod Belarak, J. Rafsanjan Univ. Med. Sci., 15 , 307-318 (2016).
29. J. L. Zhefei Ye , M. Zhou, H. Wang , Y. Ma, P. Huo, L. Yu, Y. Yan, Chem. Eng. J., 304 , 917-933 (2016) 917.
30. H. Derikvandi, J. Colloid Interface Sci., 490 , 652-664 (2017).
31. Q. Y. Fei Chen , X. Li , G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie, Y. Deng, Appl. Catal. B., 200 , 330–342 (2017).
32. E. Ghatee, Civil Engineering, Tarbiat Modares University 2016.
33. S. Adhami, J. Environ. Health Sci. Eng., 5, 173-183 (2017).
34. F. Bahmaei, Tarbiat Modares University 2017.
35. E. B. Hosseyn Kamani, J. Maz. Univ. Med., 27 , 140-154 (2017).
36. M. Pazaki, Iran. J. Chem. Chem. Eng., 37, 63-72 (2017).
37. E. Nourabadi, F. Kord Mostafapour, Journal of Torbat Heydarieh University Of Medical Sciences 6, 1-12 (2017).
38. Q. X. Wei Du , X. Wang, RCS Adv., 8, 40022-40034 (2018).
39. J. Dai, Z. Liu, Mater. Res. Express., 6, 345-365 (2019).
40. F. Mosavi, Natural Environment of Natural Resources of Iran, 72 , 379-388 (2018).
41. M. Salimi, H. R. Sobhi, Energy Environ. Sci., 4, 10288-10295 (2019).
42. M. Aram, A. Solaimany, J. Mol. Liq., 304, 112764 (2020).
43. B. Tan, Q. Chen, Opt. Mater., 109 , 110470 (2020).
44. S. K. Sharma, G. Sharma, F. J. Stadler , M. Naushad, A. A. Ghfar, T. Ahamad, J. Mol. Liq., 311, 113300 (2020).
45. S. Wua, Y. Tian, Y. Lina, Y. H. Hu, Chem. Eng. J. 406, 126747 (2021).
46. F. S. Arghavan, J. Env. Sci. 9, 105619 (2021) 10.
47. M. Doosti, S. Laleh, S. Sobhani, J. M. Sansano, Frontiers , https://doi.org/10.3389/fchem.2022.1013349 (2022).
48. A. Ahmadpor, Energy and Environment Conference 23 , 14-24 (2016).