مروری کوتاه بر شیمی انواع میزبان در برهمکنش میزبان-مهمان
محورهای موضوعی : سایرعبدالحمید دهقانی 1 , میلاد قزلسفلو 2 , لیلا مرادی 3
1 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران
2 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران
3 - گروه شیمی آلی، دانشکده شیمی، دانشگاه کاشان، کاشان، ایران
کلید واژه: اتر تاجی, سیکلو دکسترین, درشت مولکول, کالیکس آرن, نانوشیمی میزبان- مهمان,
چکیده مقاله :
نانوشیمی میزبان-میهمان شاخه ای از شیمی فوق مولکولی است که در آن یک مولکول به اصطلاح میزبان به مولکول یا یون مهمان متصل می شود. فعل و انفعالات میزبان و مهمان شامل دو مولکول یا ماده است که می توانند از طریق روابط ساختاری منحصر به فرد و اتصال غیرکووالانسی، کمپلکس ها را تشکیل دهند. این نوع تعامل که به عنوان تشخیص مولکولی نیز نامیده می شود، به طور گسترده در فرآیندهای تشخیص زیستی، مانند برهمکنش های آنزیم-بازدارنده و آنتی ژن-آنتی بادی یافت می شود. تشخیص مولکولی میزبان-مهمان یک رویکرد قدرتمند برای ساخت یک مسیر پویا فراهم میکند که اجازه دستکاری ساختاری مجموعههای حاصل از نظر اندازه و شکل را میدهد. بنابراین، مسیری را برای ساخت سیستمهای فوق مولکولی هوشمند با واکنشپذیری چند سطحی باز میکند. نانوشیمی میزبان-میهمان ایده شناخت مولکولی و برهمکنش های مولکولی از طریق پیوند غیرکووالانسی را در بر می گیرد. پیوند غیرکووالانسی در حفظ ساختار سه بعدی مولکول های بزرگ مانند پروتئین ها حیاتی است و در بسیاری از فرآیندهای بیولوژیکی که در آن مولکول های بزرگ به طور خاص اما گذرا به یکدیگر متصل می شوند، نقش دارد. از زمان کشف، برهمکنش میزبان و مهمان توجه چشمگیری را به خود جلب کرده است، زیرا بسیاری از فرآیندهای زیستی نیاز به برهمکنش های میزبان و مهمان دارند و شناخت این برهمکنش می تواند در برخی از طراحی های مواد مفید باشد. در این مقاله، به طور خلاصه به معرفی مولکولهای میزبان-مهمان و برخی از کاربردهای آن پرداخته می شود.
Host-guest nanochemistry is a branch of supramolecular chemistry in which a so-called host molecule binds to a guest molecule or ion. Host-guest interactions involve two molecules or substances that can form complexes through unique structural relationships and non-covalent bonding. Also called molecular recognition, this type of interaction is widely found in biological recognition processes, such as enzyme-inhibitor and antigen-antibody interactions. Host-guest molecular recognition provides a powerful approach to construct a dynamic interface that allows the resulting assemblies to be structurally manipulated in size and shape. Thus, it opens a path to construct smart supramolecular systems with multilevel reactivity. Host-guest nanochemistry incorporates the idea of molecular recognition and interactions through non-covalent bonding. Noncovalent bonding is critical in maintaining the three-dimensional structure of large molecules such as proteins and is involved in many biological processes in which large molecules are specifically but transiently bound together. Host-guest interactions have attracted considerable attention since their discovery, as many biological processes require host-guest interactions and can be useful in some material designs. In this article, the host-guest molecules and some of their applications are briefly introduced.
1. H.J. Yan, J. Liu, D. Wang, L.J. Wan, Philos. Trans. R. Soc. B: Biol. Sci 371, 20120302 (2013)
2. Y.F. Han, H. Li, G.X. Jin, ChemComm 46, 6879-6890 (2010)
3. G. Wenz, Clin. Drug Investig 19, 21-25 (2000)
4. J.M. Lehn, Chem. Soc. Rev 46, 2378-2379 (2017)
5. D.J. Cram, D. J.M. Cram, Science 183, 803-809 (1974)
6. J.F. Stoddart, Annual Reports Section" B"(Organic Chemistry) 85, 353-386 (1988)
7. J.W. Steed, J.L. Atwood, John Wiley & Sons (2022)
8. K. Iritani, K. Tahara, S. De Feyter, Y. Tobe, Langmuir 33, 4601-4618 (2017)
9. W. Qi, C. Ma, Y. Yan, J. Huang, Curr Opin Colloid Interface 56, 101526 (2021)
10. H. Cai, Y.L. Huang, D. Li, Coord. Chem. Rev 378, 207-221 (2019)
11. I.A. Banerjee, L. Yu, H. Matsui J. Am. Chem. Soc 125, 9542-9543 (2003)
12. S.H. Gellman, Chem. Rev 97, 1231-1232 (1997)
13. E. Persch, O. Dumele, F. Diederich, Angew. Chem., Int. Ed 54(, 3290-3327 (2015)
14. J. Rebek Jr, Angew. Chem., Int. Ed 29, 245-255 (1990)
15. H.R. Bosshard, Physiology 16, 171-173 (2001)
16. A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nat. Chem 3, 34-37 (2011)
17. F. Kienberger, V.P. Pastushenko, G. Kada, H. J. Gruber, C. Riener, H. Schindler, P. Hinterdorfer, Single Mol 1, 123-128 (2000)
18. S. Dong, B. Zheng, F. Wang, F. Huang, Acc. Chem. Res 47, 1982-1994 (2014)
19. Y.M. Zhang, Q.Y. Xu, Y. Liu, Sci. China Chem 62, 549-560 (2019)
20. H. Wang, R. Yang, L. Yang, W. Tan, ACS nano 3, 2451-2460 (2009)
21. L. Mavroudakis, K.D. Duncan, I. Lanekoff, Anal. Chem 94, 2391-2398 (2022)
22. W. Tang, S.C. Ng, Nat. Protoc 3, 691-697 (2008)
23. D. Zhang, P. Lv, C. Zhou, Y. Zhao, X. Liao, B. Yang, Mater. Sci. Eng. C 96, 872-886 (2019)
24. S. Swaminathan, R. Cavalli, F. Trotta, Wiley Interdiscip. Rev. Nanomed 8, 579-601 (2016)
25. J. Szejtli, Chem. Rev. 98 1743-1754 (1998)
26. J. Szejtli, Springer Science & Business Media 1, (2013)
27. L. Szente, J. Szejtli, Adv. Drug Deliv. Rev 36, 17-28 (1999)
28. B. Tian, J. Liu, New J. Chem 44, 9137-9148 (2020)
29. B. Tian, J. Liu, New J. Chem 44, 9137-9148 (2020)
30. A. Biwer, G. Antranikian, E. Heinzle, Applied microbiology and biotechnology 59, 609-617 (2002)
31. A. Hedges, Academic Press 833-851 (2009)
32. Z. Li, M. Wang, F. Wang, Z. Gu, G. Du, J. Wu, Chen, J. Appl. Microbiol. Biotechnol. APPL 77, 245-255 (2007)
33. D. Larsen, S.R. Beeren, ChemComm 57, 2503-2506 (2021)
34. T.W. Hui, J.F. Cui, M.K. Wong, RSC adv 7, 14477-14480 (2017)
35. F. Seidi, Y. Jin, H. Xiao, Carbohydr. Polym 242, 116277(2020)
36. P.A. Alaba, N.A. Oladoja, Y.M. Sani, O.B. Ayodele, I.Y. Mohammed, S.F. Olupinla, W.M.W. Daud, Insight into wastewater decontamination using polymeric adsorbents. Environ. Chem. Eng 6, 1651-1672 (2018)
37. R. Zhang, Y. Ma, W. Lan, D.E. Sameen, S. Ahmed, J. Dai, Y. Liu, Ultrason Sonochem 70, 105343 (2021)
38. X. Zhang, X. Li, N. Deng, Ind. Eng. Chem 51, 704-709 (2012)
39. G. Wang, W. Fan, Q. Li, N. Deng, Chemosphere 216, 707-714 (2019)
40. A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, M.S. Uddin, Carbohydr. Polym 91, 322-332 (2013)
41. J.W. Wang, L. Dai, Y.Q. Liu, R.F. Li, X.T. Yang, G.H. Lan, B. Xu, Carbohydr. Res 501, 108276 (2021)
42. L. Fan, C. Luo, M. Sun, H. Qiu, X. Li, Colloids Surf. B 103, 601-607 (2013)
43. A.Z. M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, J. Hazard. Mater 185, 1177-1186 (2011)
44. D. Zhang, P. Lv, C. Zhou, Y. Zhao, X. Liao, B. Yang, Mater. Sci. Eng. C 96, 872-886 (2019)
45. X. Yao, J. Mu, L. Zeng, J. Lin, Z. Nie, X. Jiang, P. Huang, Mater. Horiz 6, 846-870 (2019)
46. S. Swaminathan, R. Cavalli, F. Trotta, Nanomedicine and Nanobiotechnology 8, 579-601 (2016)
47. Y. Ishida, R. Gao, N. Shah, P. Bhargava, T. Furune, S.C. Kaul, R. Wadhwa, Integrative cancer therapies 17, 867-873 (2018)
48. M.F. Canbolat, A. Celebioglu, T. Uyar, Colloids Surf. B 115, 15-21 (2014)
49. Y. Shi, C. Su, W. Cui, H. Li, L. Liu, B. Feng, L, Zhao, J. Nanobiotechnology 12, 1-11 (2014)
50. M. Oroujeni, B. Kaboudin, W. Xia, P. Jönsson, D.A. Ossipov, Prog. Org. Coat 114, 154-161 (2018)
51. X. Ma, A.C. Hortelão, T. Patino, S. Sanchez, ACS nano 10, 9111-9122 (2016)
52. L. Grifoll-Romero, S. Pascual, H. Aragunde, X. Biarnes, A. Planas, Polymers 10, 352 (2018)
53. D.E. Lorke, G.A. Petroianu, J Appl Toxicol, 39, 101-116 (2019)
54. L. Mazzei, F. Musiani, S. Ciurli, J. Biol. Inorg. Chem 25, 829-845 (2020)
55. A. Robert, B. Meunier, Acs Nano 16, 6956-6959 (2022)
56. P. Mishra, J. Lee, D. Kumar, R.O. Louro, N. Costa, D. Pathania, L. Singh, Adv. Funct. Mater 32, 2108650 (2022)
57. D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan, W. Cai, Chem. Soc. Rev 48, 3683-3704 (2019)
58. R. Tarasi, M. Alipour, L. Gorgannezhad, S. Imanparast, A. Yousefi-Ahmadipour, A. Ramezani, M. Khoobi, Macromol. Res 26, 755-762 (2018)
59. P. Díez, R. Villalonga, M.L. Villalonga, J.M. Pingarrón, J. Colloid Interface Sci 386, 181-188 (2012)
60. B. Mokhtari, K. Pourabdollah, N. Dallali, J. Radioanal. Nucl. Chem 287, 921-934 (2011)
61. X. Fan, X. Guo, J. Mol. Liq 325, 115246 (2021)
62. G.E. Arnott, Eur. J. Che 24, 1744-1754 (2018)
63. M.Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens, Springer Science & Business Media (2007)
64. C.D. Gutsche, M. Iqbal, Org. Synth 68, 234-234 (2003)
65. A. A. Memon, A.R. Solangi, S. Memon, A.A. Bhatti, A. A. Bhatti, Polycycl. Aromat. Compd 36, 106-119 (2016)
66. M. Rahimi, R. Karimian, E. ostafidi, E.B. Noruzi, S. Taghizadeh, B. Shokouhi, H.S. Kafil, New J. Chem 42, 13010-13024 (2018)
67. S.G. Kharchenko, A.B. Drapailo, O.I. Kalchenko, G.D. Yampolska, S.V. Shishkina, O.V. Shishkin, V.I. Kalchenko, Phosphorus Sulfur Silicon Relat. Elem 188, 243-248 (2013)
68. A. Yousaf, S.A. Hamid, N.M. Bunnori, A.A. Ishola, Drug Des Devel Ther 2831-2838 (2015)
69. E. Da Silva, A.N. Lazar, A.W. Coleman, J Drug Deliv Sci Technol 14, 3-20 (2004)
70. B. Mokhtari, K. Pourabdollah, N. Dalali, J. Incl. Phenom. Macrocycl. Chem 69, 1-55 (2011)
71. S.B. Nimse, T. Kim, Chem. Soc. Rev 42, 366-386 (2013)
72. W. Sliwa, C. Kozlowski, John Wiley & Sons (2009)
73. J. Pizarro, E. Flores, V. Jimenez, T. Maldonado, C. Saitz, A. Vega, R. Segura, Sens. Actuators B Chem 281, 115-122 (2019)
74. G.W. Gokel, H.D. Durst, Synth 1976, 168-184 (1976)
75. C.J. Pedersen, Angew. Chem 27, 1021-1027 (1988)
76. M. Hiraoka, Elsevier (2016)
77. F. Ullah, T.A. Khan, J. Iltaf, S. Anwar, M.F.A. Khan, M.R. Khan, M. Mojzych, Appl. Sc 12, 1102 (2022)
78. R.M. Izatt, R.E. Terry, B.L. Haymore, L.D. Hansen, N.K. Dalley, A.G. Avondet, J.J. Christensen, J. Am. Chem. Soc 98, 7620-7626 (1976)
79. W. Wei, C. Xu, J. Ren, B. Xu, X. Qu, ChemComm 48, 1284-1286 (2012)
80. J.S. Bradshaw, R.M. Izatt, Acc. Chem. Res 30, 338-345 (1997)
81. R.E.C. Torrejos, G.M. Nisola, H.S. Song, L.A. Limjuco, C.P. Lawagon, K.J. Parohinog, W.J. Chung, Chem. Eng. J 326, 921-933 (2017)
82. V.N. Glushko, N.Y. Sadovskaya, V.I. Kozhuhov, L.I. Blokhina, I.A. Antropova, E.S. Petina, E.Y. Melnikova, Orient. J. Chem 33, 1689 (2017)
83. F. Dankert, C. von Hänisch, Inorg. Chem 58, 3518-3526 (2019)
84. M.R. Buchner, M. Müller, F. Dankert, K. Reuter, C. von Hänisch, Dalton Trans 47, 16393-16397 (2018)
85. J.W. Steed, Coord. Chem. Rev 215, 171-221 (2001)
86. P. Thuéry, Y. Atoini, J. Harrowfield, Cryst. Growth Des 18, 3167-3177 (2018)
87. M. Takagi, H. Nakamura, J Coord Chem 15, 53-82 (1986)
88. M.H. Hyun, Bull Korean Chem Soc 26, 1153 (2005)
89. R. Mohammadzadeh Kakhki, J. Incl. Phenom. Macrocycl. Chem 75, 11-22 (2013)
90. P. Bhakta, B. Barthunia, J. Indian Acad. Oral Med. Radiol 32, 159-163 (2020)
91. A.F. Hebard, Annu. Rev. Mater. Sci 23, 159-191 (1993)
92. P.J. Fagan, P.J. Krusic, D.H. Evans, S. A. Lerke, E. Johnston, J. Am. Chem. Soc 114, 9697-9699 (1992)
93. M.H. Abraham, C. E. Green, W.E. Acree Jr, J. Chem. Soc., Perkin trans. 1 2, 2, 281-286 (2000)
94. F. Wudl, J. Mater. Chem 12, 1959-1963 (2002)
95. C. Thilgen, F. Diederich, Chem. Rev 106, 5049-5135 (2006)
96. N. Martín, ChemComm 20, 2093-2104 (2006)
97. J. Coro, M. Suarez, L.S. Silva, K.I. Eguiluz, G. R. Salazar-Banda, Int. J. Hydrog. Energy 41, 17944-17959 (2016)
98. C.W. Isaacson, M. Kleber, J.A. Field, Environ. Sci. Technol 43, 6463-6474 (2009)
99. S. Bosi, T. Da Ros, G. Spalluto, M. Prato, Eur. J. Med. Chem 38, 913-923 (2003)
100. T. Braun, A.P. Schubert, R.N. Kostoff, Chem. Rev 100, 23-38 (2000)
101. G. Gil‐Ramírez, D.A. Leigh, A.J. Stephens, Angew. Chem., Int. Ed 54, 6110-6150 (2015)
102. N.H. Evans, P.D. Beer, Chem. Soc. Rev 43, 4658-4683 (2014)
103. E. Coronado, P. Gaviña, S. Tatay, Chem. Soc. Rev 38, 1674-1689 (2009)
104. R.T. Lam, A. Belenguer, S.L. Roberts, C. Naumann, T. Jarrosson, S. Otto, J.K. Sanders, science 308, 667-669 (2005)
105. J. Li, P. Nowak, H. Fanlo-Virgós, S. Otto, Chem. Sci 5, 4968-4974 (2014)
106. J. Frey, T. Kraus, V. Heitz, J.P. Sauvage, ChemComm 42, 5310-5312 (2005)
107. C.J. Bruns, J.F. Stoddart, Acc. Chem. Res 47, 2186-2199 (2014)
108. V. Blanco, A. Carlone, K.D. Hänni, D.A, Leigh, B. Lewandowski, Angew. Chem., Int. Ed 21, 5166-5169 (2012)
109. H.H. Dam, F. Caruso, ACS nano 6, 4686-4693 (2012)