اثر نانوذرات اکسید روی و شوری روی صفات اناتومیک گیاه Datura stramonium
محورهای موضوعی :
فیزیولوژی گیاهی
آمنه وفایی مقدم
1
,
علیرضا ایرانبخش
2
,
سارا سعادتمند
3
,
مصطفی عبادی
4
,
زهرا اوراقی اردبیلی
5
1 - گروه زیست شناسی ، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی ، تهران
2 - زیست شناسی، علوم زیستی، دانشگاه آزاد علوم و تحقیقات، تهران، ایران
3 - گروه زیست شناسی ، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی ، تهران ، ایران
4 - گروه زیست شناسی ، واحد دامغان ، دانشگاه آزاد اسلامی ، دامغان ، ایران.
5 - گروه زیست شناسی ، واحد گرمسار ، دانشگاه آزاد اسلامی ، گرمسار ، ایران
تاریخ دریافت : 1400/09/03
تاریخ پذیرش : 1400/12/03
تاریخ انتشار : 1400/12/01
کلید واژه:
نانو اکسید روی,
Datura stramonium,
تنش شوری,
صفات اناتومیک,
چکیده مقاله :
هدف این مطالعه، بررسی تغییرات آناتومیک گیاه داتوره Datura stramonium در پاسخ به نانوذرات اکسید روی (صفر، 100 و 500 میلیگرم در لیتر) و شوری (صفر و 300 میلیمولار) است. تیمار شوری موجب کاهش معنی دار میزان طول و عرض برگ نسبت به شاهد شد. تیمار 100 میلیگرم در لیتر نانو اکسید روی موجب افزایش میزان طول و عرض برگ نسبت به شاهد شد. همچنین، این تیمار باعث کاهش اثرات منفی شوری بر طول برگ و عرض برگ گیاه داتوره شد. در حالیکه تیمار 500 میلیگرم در لیتر نانو مانند شوری باعث کاهش این خصوصیات رشدی در برگ شد. شوری باعث کاهش ضخامت برگ و تضعیف توسعه آوندها شد. در حالیکه تیمار 100 میلیگرم در لیتر نانو اکسید روی موجب افزایش ضخامت برگ و تقویت توسعه سیستم آوندی شد. تیمار نانو اکسید روی در غلظت 100 میلیگرم در لیتر موجب تخفیف علائم سمیت شوری در گیاه شد. در مقطع عرضی ساقه، تیمار شوری موجب کاهش تمایز آوندی شد، در حالیکه تیمار 100 میلیگرم در لیتر نانو اکسید روی موجب توسعه بافت استحکامی کلانشیم شد. همچنین دستجات آوندی ساقه توسعه بیشتری در این گروه داشتند. در تیمار همزمان شوری و نانو روی در غلظت 100 میلیگرم در لیتر توسعه سیستم آوندی نسبت به گروه کنترل شوری بیشتر بود که همین امر توانست باعث کاهش علائم سمیت شوری در گیاه شود. نتایج نشان داد که تیمار 500 میلیگرم در لیتر نانو اکسید اثرات بازدارنده بر تمایز سیستم آوندی داشت. بنابراین به نظر می رسد تیمار نانو در غلظت های کم می تواند علایم سمیت شوری را از طریق تاثیر بر تمایز سیستم آوندی، بافت های استحکامی و رشد را تخفیف دهد.
منابع و مأخذ:
Ahmadi, L., Kolahi, M., Mohajjel Shoja, H. and E, Mohajel Kazemi. 2020. Effect of TiO2 nanoparticles on physiological and anatomical characteristics of Baby sun rose (Aptenia cordifolia). Journal of Cell and Tissue, 11(3): 188-203.
Babajani, A., Iranbakhsh, A., Ardebili, Z.O. and B, Eslami. 2019. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environment Science and Pollution Research, 26(24): 24430-44.
Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., José-Yacamán, M., Peralta-Videa, J.R. and J.L, Gardea-Torresdey. 2015. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science Total Environment, 15(515): 60-9.
Chaves M., Flexas J. and C, 2008. Photosynthesis Under Drought and Salt Stress: Regulation Mechanisms From Whole Plant to Cell. Annals of Botany, 103(4): 551-560.
Faizan, M., Hayat, S. and J, Pichtel. 2020. Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis. Sustainable Agriculture Review. 41: 83-99.
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. and S, Hayat. 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56(2): 678-86.
Dunlap, J.R. and M, Binzel. 1996. NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress induced abscisic acid. Plant Physiology. 112(1): 379-384.
Iranbakhsh, A., Ardebili, Z.O., Molaei, H., Ardebili , N.O. and M, Amini. 2020. Cold plasma up-regulated expressions of WRKY1 transcription factor and genes involved in biosynthesis of cannabinoids in Hemp (Cannabis sativa). Plasma Chemistry and Plasma Process, 40(2): 527-537.
Iranbakhsh, A., Oshaghi, M. and A, Majd. 2006. Distribution of atropine and scopolamine in different organs and stages of development in Datura stramonium (Solanaceae). Structure and ultrastructure of biosynthesizing cells. Acta Biologica Cracoviensia series Botanica, 48(1): 8-13.
Lee W., An Y., Yoon, H. and H, Kweon. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar teat for water-insoluble nanoparticles. Environmental Toxicology and Chemistry: An International Journal, 27(9): 1915–1921.
Li, S., Lin, Y.C.J., Wang, P., Zhang, B., Li, M., Chen, S., Shi, R., Tunlaya-Anukit, S., Liu, X., Wang, Z. and X, Dai. 2019. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell, 31(3): 663-686
Mendoza-Hernández, J.C., Perea-Vélez, Y.S., Arriola-Morales, J., Martínez-Simón, S.M. and G, Pérez-Osorio. 2016. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological Research, 1(188): 53-61.
Mittal, S., Kumari, N. and V, Sharma. 2012. Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiology and Biochemistry, 1(54): 17–26.
Munns, R. and M, Tester. 2008. Mechanisms of Salinity Tolerance. Annual review of plant biology, 2(59): 651-81.
Nilsen, E. and D.M, 1996. The physiology of plants under stress- abiotic factors. Wiley, New York.
Prasad, S., Patel, H., Patel, T., Patel, K. and K, Selvaraj. 2013. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces, 1(103): 261–266.
Qiang, W., Hou, Y.L., Li, X., Xia K. and Z.H, 2015. Cloning and expression of the key enzyme hyoscyamine 6 beta-hydroxylase gene (DaH6H) in scopolamine biosynthesis of Datura arborea. Acta Pharmaceutica Sinica, 50(10): 1346-1355.
Saleem, A., Ashraf, M. and N.A, Akram. 2011. Salt (NaCl)-induced modulation in some keyphysio-biochemical attributes in okra (Abelmoschus esculentus). Journal Agronomical Crop Science, 197(3): 202-213.
Shu, S., Sun, J., Guo, S.R., Li, J., Liu, C.J., Wang, C.Y. and C.X, Du. 2010. Effects of exogenous putrescine on PSII photochemistry and ion distribution of cucumber seedlings under salt stress. Acta Horticultural Sinica, 37(7): 1065–1072.
Soni, P., Siddiqui, A.A., Dwivedi, J. and V, Soni. 2012. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: an overview. Asian Pacific Journal of Tropical Biomedicine, 2(12): 1002-8.
Yang, Y. and Y, Guo. 2018. Elucidating the molecular mechanisms mediating plant salt stress responses. New Phytologist. 217(2): 523-539
Younis, A., Anjum, S., Riaz, A., Hameed, M., Tariq, U. and M, Ahsan. 2014. Production of quality dahlia (Dahlia variabilis Redskin) flowers by efficient nutrients management. Am-Eurasian Journal of Agriculture and Environmental Sciences. 14(2): 137-142.
Zheng, L., Hong, F., Lu, S. and C, Liu. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological trace element research, 104(1): 83–92.
Zhang, Y., Xu, Z., Ji, A., Luo, H. and J, Song. 2018. Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salviamiltiorrhiza. ActaPharmaceuticaSinica B, 8(2): 295-305.