تخمین اندازه موثر جمعیت با استفاده از دادههای تراشههای SNP-CHIP 70K در اسب نژاد کرد
محورهای موضوعی : فصلنامه زیست شناسی جانوریبهاره صفایی 1 , حسین مرادی شهربابک 2
1 - دانشکده کشاورزی و منابع طبیعی دانشگاه تهران- کرج
2 - گروه علوم دامی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران
کلید واژه: اندازه موثر جمعیت, عدم تعادل لینکاژی, پلیمورفیسم تک نوکلئوتیدی, اسب کرد,
چکیده مقاله :
سالهاست نژادهای بومی بسیار مورد توجه قرار دارند و تلاشهای زیادی برای حفظ این نژادها انجام میشود. مطالعه و ارزیابی ساختار جمعیت و تنوع یکی از راههای حفاظت از ذخایر ژنتیکی است. با توجه به اهمیت حفظ نژادهای مختلف اسب ایرانی ما نیز در این مطالعه به بررسی اندازه موثر جمعیت در اسب نژاد کرد پرداختیم. یکی از پارامترهای مهم برای بررسی ساختار جمعیت اندازه موثر جمعیت است. بدین منظور، عدم تعادل لینکاژی را با استفاده از اطلاعات نشانگرهای تکنوکلئوتیدی حاصل از تراشههای متراکم 70k در اسب نژاد کرد تخمین زدیم. در ابتدا بروی 65157SNP اولیه مراحل کنترل کیفیت دادهها توسط نرمافزار Plink (mind> 0.05، geno>0.05، MAF<0.01، hwe< 10-6) انجام گرفت و بدنبال آن تعدادی از دادهها حذف شدند و در نهایت تعداد 56012 SNP کروموزمهای اتوزوم برای ادامه آنالیزها باقی ماندند. LDبا استفادها از آماره r2 تخمین زده شد و از این اطلاعات برای تخمین اندازه موثر جمعیت استفاده شد. r2 در فاصلهی 0 تا 5/2 kb بیشترین مقدار را داشت که با افزایش فاصله بین نشانگرها کاهش نشان داد. متوسط r2 در تمام کروموزومها 046/0 تخمین زده شد و محدودهی آن از 041/0 تا 052/0 در بین کروموزومها تخمین زده شد. همچنین اندازه موثر در 4463 نسل قبل 6674 تخمین زده شد که در نسل حاضر نیز به 26 رسید.
Native breeds of each region should be given particular consideration, and we should put excessive effort in preserving these breeds. Studying and evaluating the population structure and diversity is a technique to protect the genetic reserves of indigenous breeds. In this study, regarding the importance of preserving diverse breeds of Iranian horses, we investigated the effective population size of Kurdish horses. One of the significant variables for examining the population structure is the effective population size. For this purpose, we estimated linkage disequilibrium using Single Nucleotide Polymorphism information obtained from 70k SNPchips in Kurdish horses. At first, data quality control procedures were performed on the initial 65157 SNPs by Plink software (mind>0.05، geno>0.05، MAF<0.01، hwe<10-6), and then some data were removed posteriorly, and ultimately the number of 56012 SNPs on autosomal chromosomes were left for further analyses. linkage disequilibrium was calculated using the r2 statistic, and we employed this information to estimate the effective population size. r2 had the highest value in the distance from 0 to 2.5 kb, which decreased with increasing distance between markers. The average r2 was estimated at 0.046 in all chromosomes, and ranged from 0.041 to 0.052 among chromosomes. Likewise, the effective population size was predicted to be 6674 in 4463 previous generations, which reached 26 in the current generation.
1. Ala Amjadi, M,. Mehrbani Yeganeh, H,. Sadeghi, M,. Abbas Raza, S.H,. Yang, J,. Amirpour Najafabadi, H,. Batool, U,. Shoorei, H,. Abdelnour, S.A,. Zaheer Ahmed, J. Microsatellite Analysis of Genetic Diversity and Population Structure of the Iranian Kurdish Horse. Journal of Equine Veterinary Science.Volume 98, 2021,103358,ISSN 0737-0806, https://doi.org/10.1016/j.jevs.2020.103358.
2. Barbato, M., Orozco-terWengel, P., Tapio, M., & Bruford, M. W. (2015). SNeP: A tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics. https://doi.org/10.3389/fgene.2015.00109.
3. Bazvand, B., Rashidi, A., Zandi, M. B., Moradi, M. H., Rostamzadeh, J. (2024). Genome-wide analysis of population structure, effective population size and inbreeding in Iranian and exotic horses. PLoS ONE 19(3): e0299109. https://doi.org/10.1371/journal.pone.0299109.
4. Corbin, L. J., Blott, S. C., Swinburne, J. E., Vaudin, M., Bishop, S. C., & Woolliams, J. A. (2010). Linkage disequilibrium and historical effective population size in the Thoroughbred horse. Animal Genetics, 41(SUPPL. 2), 8–15. https://doi.org/10.1111/j.1365-2052.2010.02092.x.
5. Davoudi, P., Moradi-Shahrbabak, H., Mehrabani-Yeganeh, H., Ghoreishifar, S.M,. Gholami, S., Abdollahi-Arpanahi, R. (2020). Exploring the structure of haplotype blocks, runs of homozygosity and effective populatin size in Khuzestani River buffalo. Slovak journal animal science, 53, 2020 (2): 67–77.
6. Do, K.-T., Lee, J.-H., Lee, H.-K., Kim, J., & Park, K.-D. (2014). Estimation of effective population size using single-nucleotide polymorphism (SNP) data in Jeju horse. Journal of Animal Science and Technology, 56(1), 28. https://doi.org/10.1007/BF01726368.
7. Flury, C., Tapio, M., Sonstegard, T., Drögemüller, C., Leeb, T., Simianer, H., … Rieder, S. (2010). Effective population size of an indigenous Swiss cattle breed estimated from linkage disequilibrium. Journal of Animal Breeding and Genetics, 127(5), 339–347. https://doi.org/10.1111/j.1439-0388.2010.00862.x.
8. Frankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management : Revised recommendations for the 50 / 500 rules , Red List criteria and population viability analyses. Biologycal Conservation, 170, 56–63. https://doi.org/10.1016/j.biocon.2013.12.036.
9. Hall, S. J. G. (2016). Effective population sizes in cattle, sheep, horses, pigs and goats estimated from census and herdbook data. Animal, 10(11), 1778–1785. https://doi.org/10.1017/S1751731116000914.
10. Hayes, B. J., Visscher, P. M., McPartlan, H. C., & Goddard, M. E. (2003). Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Research, 13(4), 635–643. https://doi.org/10.1101/gr.387103.
11. Khatkar, M. S., Nicholas, F. W., Collins, A. R., Zenger, K. R., Cavanagh, J. A. L., Barris, W., … Raadsma, H. W. (2008). Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics, 9. https://doi.org/10.1186/1471-2164-9-187.
12. Kim, E., & Kirkpatrick, B. W. (2009). Linkage disequilibrium in the North American Holstein population. International Society for Animal Genetics, Animal Genetics, (2000), 279–288. https://doi.org/10.1111/j.1365-2052.2008.01831.x.
13. Lee, Y. S., Woo Lee, J., & Kim, H. (2014). Estimating effective population size of thoroughbred horses using linkage disequilibrium and theta (4Nμ) value. Livestock Science, 168, 32–37. https://doi.org/10.1016/j.livsci.2014.08.008.
14. Lee, Y., Woo, J., & Kim, H. (2014). Estimating effective population size of thoroughbred horses using linkage disequilibrium and theta ( 4 N μ ) value. Livestock Science, 168, 32–37. https://doi.org/10.1016/j.livsci.2014.08.008.
15. Mohammadi H., Rafat S.A., Moradi Shahrbabak H., Shodja J., Moradi M.H. (1396). Estimation of linkage disequilibrium and whole-genome scan for detection of loci under selection associated with body weight in Zandi sheep breed.The Agricultural Biotechnology Journal. 10.22103/JAB.2018.2020 . (in Persian).
16. Prieur, V., Clarke, S.M., Brito, L.F. et al. Estimation of linkage disequilibrium and effective population size in New Zealand sheep using three different methods to create genetic maps. BMC Genet 18, 68 (2017). https://doi.org/10.1186/s12863-017-0534-2.
17. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795.
18. Qanbari, S., Pimentel, E. C. G., Tetens, J., Thaller, G., Lichtner, P., Sharifi, A. R., & Simianer, H. (2010). The pattern of linkage disequilibrium in German Holstein cattle. Animal Genetics, 41(4), 346–356. https://doi.org/10.1111/j.1365-2052.2009.02011.x.
19. Shin, D., Cho, K., Park, K., Lee, H., & Kim, H. (2013). Accurate Estimation of Effective Population Size in the Korean Dairy Cattle Based on Linkage Disequilibrium Corrected by Genomic Relationship Matrix. Asian-Australasian Journal of Animal Sciences. 26(12), 1672–1679.
20. Tenesa, A., Navarro, P., Hayes, B. J., Duffy, D. L., Clarke, G. M., Goddard, M. E., Visscher, P.M. (2007). Recent human effective population size estimated from linkage disequilibrium. Genome Research. 2, 520–526. https://doi.org/10.1101/gr.6023607.8.
21. Yousefi-Mashouf, N., Mehrabani-Yeganeh, H., Nejati-Javaremi, A., Bailey E, Petersen JL. Genomic comparisons of Persian Kurdish, Persian Arabian and American Thoroughbred horse populations. PLoS One. 2021 Feb 16;16(2):e0247123. doi: 10.1371/journal.pone.0247123. PMID: 33592064; PMCID: PMC7886144.
22. Zhao, F., Wang, G., Zeng, T., Wei, C., Zhang, L., Wang, H., Zhang, SH., Liu , R.., Liu, Z., Du, L. (2014). Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Livestock Science, 170, 22–29. https://doi.org/10.1016/j.livsci.2014.10.015.