فهرس المقالات محسن زیب


  • المقاله

    1 - Ionic Liquid-based Ultrasound-assisted In-situ Solvent Formation Microextraction and High-performance Liquid Chromatography for the Trace Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples
    Journal of Applied Chemical Research , العدد 2 , السنة 12 , بهار 2018
    A green and efficient ionic liquid-based ultrasound-assisted in-situ solvent formationmicroextraction (IL-UA-ISFME) in combination with high-performance liquid chromatographyultravioletdetection (HPLC-UV) has been successfully developed for the trace determination offiv أکثر
    A green and efficient ionic liquid-based ultrasound-assisted in-situ solvent formationmicroextraction (IL-UA-ISFME) in combination with high-performance liquid chromatographyultravioletdetection (HPLC-UV) has been successfully developed for the trace determination offive selected polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. In thismethod, a hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) wasformed by addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) tosample solution containing an ion-pairing agent (NaPF6). The analytes were extracted into the ionicliquid phase while the microextraction solvent was dispersed through the sample by utilizingultrasonic radiation. The sample was then centrifuged and extracting phase retracted into themicrosyringe, diluted with acetonitrile, and injected to HPLC. In the beginning, effectiveparameters controlling the performance of the microextraction process were studied in detail andoptimized. The limit of detections (LOD, S/N = 3) were in the range of 0.32-0.79 μg L-1 while theRSD% values were below than 5.2% (n = 6). A good linearity (0.997 ≥ r2 ≥ 0.992) and a broadlinear over the concentration ranges from 1 to 500 μg L-1 were achieved. The method wasultimately applied for the preconcentration and sensitive determination of the PAHs in severalenvironmental water samples. The accuracy of the method in the real samples was tested by the relative recovery experiments with results ranging from 90-106%, which confirmed thatcomplicated matrixes had almost little effect on the developed analytical procedure. تفاصيل المقالة

  • المقاله

    2 - Low-Level Quantification of Cefdinir and Cefixime in Human Plasma Using Ultrasound-and Magnetic-Assisted Dispersive Micro-Solid-Phase Extraction (MSPE) Based upon Carbon Quantum Dots (CQDs) Combined with High-Performance Liquid Chromatography (HPLC)
    Applied Nano materials and Smart Polymers , العدد 1 , السنة 1 , بهار 2023
    A promising and reusable nanohybrid based on carbon quantum dots (CQD) was fabricated as a sorbent for ultrasound- and magnetic-assisted dispersive micro-solid-phase extraction(US-M-A-DMSPE) followed by high-performance liquid chromatography with ultraviolet detection ( أکثر
    A promising and reusable nanohybrid based on carbon quantum dots (CQD) was fabricated as a sorbent for ultrasound- and magnetic-assisted dispersive micro-solid-phase extraction(US-M-A-DMSPE) followed by high-performance liquid chromatography with ultraviolet detection (HPLC-UV) for simultaneous trace determination of cephalosporins (Cefdinir & Cefixime) in human plasma. The structure of the prepared sorbent was characterized by x-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Under the optimized conditions, the nanosorbent provided high adsorption and selectivity toward the analytes. The limits of detection and the coefficients of determination (r2) with dynamic ranges for cefdinir & cefixime were estimated. The method was used for quantifying cefdinir & cefixime in plasma samples to evaluate the pharmacokinetic aspects,including the half-life (T1/2), the time to reach the maximum concentration (Tmax), the maximum plasma concentration (Cmax), area under the curve (AUC0-24) and area under the curve at infinite time (AUC0-∞). Reliable reproducibility as the intra- assay and inter-assay together with reasonable accuracy were obtained. تفاصيل المقالة

  • المقاله

    3 - Trace Monitoring of Phthalate Esters in Environmental Water Samples by Ionic Liquid-based Ultrasound-assisted In-situ Solvent Formation Microextraction Combined with High-performance Liquid Chromatography
    Journal of Chemical Health Risks , العدد 4 , السنة 8 , تابستان 2018
    A simple and efficient ionic liquid-based ultrasound-assisted in-situ solvent formation microextraction (IL-UA-ISFME) in combination with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) has been gainfully developed for the trace determination of f أکثر
    A simple and efficient ionic liquid-based ultrasound-assisted in-situ solvent formation microextraction (IL-UA-ISFME) in combination with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) has been gainfully developed for the trace determination of four phthalate esters (PEs) in environmental water samples. In this method, a hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was created by addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to sample solution constituting an ion-pairing agent (NaPF6). The analytes were extracted inside the ionic liquid phase while the microextraction solvent was dispersed through the sample by utilizing ultrasonic radiation. The sample was then centrifuged and extracting phase retracted into the microsyringe, diluted with acetonitrile, and injected to HPLC. At first, vigorous parameters controlling the performance of the microextraction process were considered and optimized. The limit of detections (LOD, S/N = 3) were in the range of 0.22-0.33 µg L-1 while the RSD% values were below than 6.1% (n = 5). A good linearity (0.996 ≥ r2 ≥ 0.992) and a broad linear over the concentration range from 1.0 to 500 µg L-1 were achieved. At last, the method was applied for the preconcentration and sensitive determination of the PEs in several environmental water samples. The accuracy of the method in the real samples was examined by the relative recovery experiments with results ranging from 90-107%, which approved that intricate matrixes had approximately slight effect on the developed procedure. تفاصيل المقالة

  • المقاله

    4 - Magnetic Solvent Bar Liquid-Phase Microextraction Followed by Gas Chromatography-Flame Ionization Detection for the Trace Determination of Selected Polycyclic Aromatic Hydrocarbons in Environmental Water Samples
    Journal of Chemical Health Risks , العدد 2 , السنة 8 , بهار 2018
    A novel and efficient hollow fiber-based method, viz. magnetic solvent bar liquid-phase microextraction (MSB-LPME) combined with gas chromatography-flame ionization detection (GC-FID) was successfully developed for the trace determination of selected polycyclic aromatic أکثر
    A novel and efficient hollow fiber-based method, viz. magnetic solvent bar liquid-phase microextraction (MSB-LPME) combined with gas chromatography-flame ionization detection (GC-FID) was successfully developed for the trace determination of selected polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The target analytes were extracted from sample solution to the organic solvent immobilized in a fiber. After extraction, the analyte-adsorbed magnetic solvent bar could be readily isolated from the sample solution by a magnet which could greatly simplify the operation and also decline the total pretreatment time. The bar was first eluted with methanol, evaporated to dryness while the residue was dissolved in toluene and finally injected into GC-FID. Begin with, effective parameters controlling the performance of the microextraction were evaluated and optimized. The values of the detection limit of the method were in the range of 0.05-0.08 µg L-1 and the RSD% values for the analysis of 10.0 µg L-1 of the analytes was below than 5.8% (n= 6). A good linearity (0.998 ≥ r2 ≥ 0.994) and a broad linear range (0.1-200 µg L-1) were obtained. The method was eventually utilized for the preconcentration and determination of the PAHs in environmental water samples and satisfactory results were obtained. تفاصيل المقالة

  • المقاله

    5 - Ultrasound- and Magnetic Assisted Dispersive-Micro-Solid-Phase Extraction followed by Atomic Absorption Spectrometry based on Carbon Quantum Dots Functionalized with Magnetite/Zeolitic Imidazolate Framework 71/Polypyrrole for Determination and Trace Monitoring of Pb (II) in Water and Food Samples
    journal of chemical reactivity and synthesis , العدد 5 , السنة 13 , پاییز 2023
    In this search, an ultrasound-and magnetic-assisted dispersive micro-solid-phase extraction (US-M-A-DMSPE) was developed for selective separation of Pb ion by an innovative nanocomposite based on carbon quantum dots functionalized with magnetite/zeolitic imidazolate fra أکثر
    In this search, an ultrasound-and magnetic-assisted dispersive micro-solid-phase extraction (US-M-A-DMSPE) was developed for selective separation of Pb ion by an innovative nanocomposite based on carbon quantum dots functionalized with magnetite/zeolitic imidazolate framework 71/polypyrrole. To fabricate the novel nanocomposite, first, the magnetized carbon quantum dot was functionalized by imidazolate zeolite-71, and then pyrrole was utilized as an oxidant agent in the chemical polymerization on the surface of magnetic carbon quantum dot functionalized with zeolitic imidazolate framework 71. Lead was analyzed by flam atomic absorption spectrometry (FAAS). The structure of nanosorbent was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray analyzer (EDX), vibrating sample magnetometry (VSM) and Fourier transform-infrared (FT-IR). To maximum recoveries of Pb (II), the optimum experimental conditions and analytical parameters such as amount of sorbent, pH of samples, ultrasonic time, chelating agent concentration, ionic strength, volume of desorbing solvent and reusability were estimated. Under the optimal conditions, the preconcentration factor was achieved 60. The limits of detection and quantification were found to be 0.15 ng mL−1 and 0.5 ng mL−1, respectively. The relative standard deviations (RSD%) of the developed US-M-A-DMSPE process is below was 2.9 %. The present process was successfully applied to the determination of Pb2+ ion at trace levels in water and food samples by ultrasound-and magnetic-assisted dispersive micro-solid-phase extraction tandem flame atomic adsorption spectroscopy (US-M-A-DMSPE-FAAS) and its validation was investigated by recovery experiments and analyzing certified reference material. تفاصيل المقالة