فهرس المقالات رضا انصاری


  • المقاله

    1 - Vibration Suppression of Smart FGM Cylindrical Shells Using Magnetostrictive Layers
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , العدد 4 , السنة 1 , بهار 2008
    In the present work, FGM shells integrated with magnetostrictive layers acting as distributed sensors and actuators are modeled to control vibration attenuation of FGM shells with simply supported boundaryconditions. To achieve a mechanism for actively control of the os أکثر
    In the present work, FGM shells integrated with magnetostrictive layers acting as distributed sensors and actuators are modeled to control vibration attenuation of FGM shells with simply supported boundaryconditions. To achieve a mechanism for actively control of the oscillation amplitude of the integrated structure, a negative velocity proportional feedback control law is implemented in the study. Theoretical formulation is based on the first order shear deformation shell theory, taking into consideration transverse shear deformation and rotary inertia effects. Material properties are assumed to be temperature-dependent and graded in the thickness direction according to different volume fraction functions. A FGM cylindrical shell made up of a mixture of ceramic and metal is considered. The magnetostrictive layers are also considered to be made of Terfenol-D. The influence of vibration attenuation characteristics of magnetostrictive layers, the location of these layers and control parameters on vibration suppression is investigated. تفاصيل المقالة

  • المقاله

    2 - Nonlinear Vibration Analysis of Embedded Multiwalled Carbon Nanotubes in Thermal Environment
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , العدد 4 , السنة 1 , پاییز 2008
    In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equa أکثر
    In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equations coupled via the van der Waals (vdW) interlayer force. The influences of number of tube walls, the elastic medium, nanotube aspect ratio and temperature rise on nonlinear frequency are fully examined. The results obtained for single-walled, double-walled and triple-walled carbon nanotubes indicate that with increasing the number of tube walls, coefficient of the surrounding elastic medium, tube aspect ratio and temperature nonlinear frequency tend to the linear counterpart. تفاصيل المقالة