فهرس المقالات Azadeh Asefnejad


  • المقاله

    1 - A novel investigation on characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering
    Journal of Nanoanalysis , العدد 500 , السنة 1 , زمستان 2050
    The aim of this work was to investigate the characterization of a bioactive glass (BG) ceramic prepared by sol–gel technique and chitosan-gelatin membranes prepared by lyophilization technique containing 0, 1 and 2 vol.% ethanol. Early-absorbing and late-absorbing أکثر
    The aim of this work was to investigate the characterization of a bioactive glass (BG) ceramic prepared by sol–gel technique and chitosan-gelatin membranes prepared by lyophilization technique containing 0, 1 and 2 vol.% ethanol. Early-absorbing and late-absorbing bone substitutes in practice constitute the main volume of bone substitutes used by dentist and orthopedic surgeons. When the graft is to be gradually replaced by normal bone, the important issue is the duration and rate of graft absorption. The prepared samples were characterized using fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. The presence of Ag nanoparticles into bioactive glass was evaluated. Porous membranes were examined under scanning electron microscopy (SEM) to estimate the size of the pores and analysis the morphological behavior. The pore diameter could be controlled within the range 10–30 µm by adjusting the percent of ethanol. The formation of needle-like hydroxyapatite (HA) crystals on the surface of the membrane after 7 days immersion in the ringer's solution was also assessed using SEM images. The SEM images results illustrated the porous structures in the membranes. The average pore size for chitosan-gelatin membrane with 2% ethanol were 30±6.3 μm. Finally, these obtained results suggested that the developed membrane with 2% ethanol possess the prerequisites for tissue engineering and can be used for jawbone tissue engineering applications. تفاصيل المقالة

  • المقاله

    2 - A novel soft polycaprolactone-alginate nanofiber plasma-modified with sufficient cell attachment for tissue engineering
    Journal of Nanoanalysis , العدد 1 , السنة 10 , زمستان 1401
    Degradable polymers belonging to the aliphatic polyester family are currently the most attractive group of synthetic polymers. Natural and synthetic materials used in tissue engineering scaffolds should have properties such as proper biocompatibility and biodegradabilit أکثر
    Degradable polymers belonging to the aliphatic polyester family are currently the most attractive group of synthetic polymers. Natural and synthetic materials used in tissue engineering scaffolds should have properties such as proper biocompatibility and biodegradability with controllable degradation and adsorption rate. Synthetic polymers provide the mechanical support required by the system and the tensile strength for cell attachment and growth. Compared to synthetic polymers, natural polymers are more compatible and reduce the likelihood of tissue rejection after transplantation. In this article, sodium alginate (SA), polyvinyl alcohol (PVA) and polycaprolactone (PCL) were used to produced porous scaffold. For this purpose, different percentages of SA and PVA were prepared for electrospinning technique. The PCL/80PVA: 20SA scaffold was evaluated by fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), light microscopy (LM), swelling, biodegradability and biocompatibility analyzes after plasma process. Morphological examination showed the fiber diameter was about 299 nm and the inflation and degradation were reported at 92% and 18%, respectively. The contact angle created is equal to 42 °and the biocompatibility study for the scaffold showed 93% survival rate. The obtained results showed that PCL/80PVA: 20SA scaffold after plasma can be used in tissue engineering. تفاصيل المقالة

  • المقاله

    3 - A novel investigation on the characterization of bioactive glass cement and chitosan-gelatin membrane for jawbone tissue engineering
    Journal of Nanoanalysis , العدد 5 , السنة 8 , پاییز 2021
    The aim of this work was to investigate the characterization of a bioactive glass(BG) ceramic prepared by sol-gel technique and chitosan-gelatin membranesprepared by lyophilization technique containing 0, 1, and 2 vol.% ethanol. Earlyabsorbingand late-absorbing bone sub أکثر
    The aim of this work was to investigate the characterization of a bioactive glass(BG) ceramic prepared by sol-gel technique and chitosan-gelatin membranesprepared by lyophilization technique containing 0, 1, and 2 vol.% ethanol. Earlyabsorbingand late-absorbing bone substitutes in practice constitute the mainvolume of bone substitutes used by dentists and orthopedic surgeons. Whenthe graft is to be gradually replaced by normal bone, the important issue is theduration and rate of graft absorption. The prepared samples were characterizedusing Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD)analysis. The presence of Ag nanoparticles in bioactive glass was evaluated.Porous membranes were examined under scanning electron microscopy (SEM)to estimate the size of the pores and analysis the morphological behavior. Thepore diameter could be controlled within the range of 10–30 μm by adjusting thepercentage of ethanol. The formation of needle-like hydroxyapatite (HA) crystals onthe surface of the membrane after 7 days of immersion in the ringer's solution wasalso assessed using SEM images. The SEM image results illustrated the porousstructures in the membranes. The average pore size for chitosan-gelatin membranewith 2% ethanol was 30±6.3 μm. Finally, these obtained results suggest thatthe developed membrane with 2% ethanol possesses the prerequisites for tissueengineering and can be used for jawbone tissue engineering applications. تفاصيل المقالة

  • المقاله

    4 - Advancing biomedical, food, and industrial applications through carbon nanomaterials: current status and future perspectives
    Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering , العدد 4 , السنة 15 , تابستان 2023
    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, possess remarkable mechanical, electrical, and biological properties, making them promising enhancers in biological materials. Their nanoscale dimensions and large surface area enable targeted interacti أکثر
    Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, possess remarkable mechanical, electrical, and biological properties, making them promising enhancers in biological materials. Their nanoscale dimensions and large surface area enable targeted interactions with living organisms. However, concerns regarding their cellular compatibility in clinical orthopedic applications persist. To address this, ongoing investigations are examining the interaction of carbon nanomaterials with biological systems, including proteins, nucleic acids, and human cells, to assess their behavior in laboratory and in vivo settings. Studies have demonstrated that composites reinforced with CNTs and graphene enhance the adhesion of osteoblast cells, leading to enhanced bone tissue formation. This potential is expected to drive advancements in reconstructive medicine and bone tissue engineering. Additionally, this article presents current advancements and future research directions in developing CNT and graphene-reinforced implants for bone tissue engineering. تفاصيل المقالة