فهرس المقالات Rahil Hosseini


  • المقاله

    1 - A Fuzzy-GA Approach for Parameter Optimization of A Fuzzy Expert System for Diagnosis of Acute Lymphocytic Leukemia in Children
    Journal of Advances in Computer Engineering and Technology , العدد 2 , السنة 2 , بهار 2016
    Hybrid fuzzy expert systems are one of the most practical intelligent paradigm of soft computing techniques with the high potential for managing uncertainty associated to the medical diagnosis. The potential of genetic algorithm (GA) by inspiring from natural evolution أکثر
    Hybrid fuzzy expert systems are one of the most practical intelligent paradigm of soft computing techniques with the high potential for managing uncertainty associated to the medical diagnosis. The potential of genetic algorithm (GA) by inspiring from natural evolution as a learning and optimization technique has been vastly concentrated for improving fuzzy expert systems. In this paper, the GA capabilities have been applied for optimization of the membership function parameters in a fuzzy inference system (FIS) for diagnosing of acute lymphocytic leukemia in children. The fuzzy expert system utilizes the high interpretability of the Mamdani reasoning model to explain system results to experts in a high level and combines it with the GA optimization capability to improve its performance. The hybrid proposed Fuzzy-GA approach was implemented in Matlab software and evaluated on the real patients’ dataset. High accuracy of this system was achieved after GA tuning process with an accuracy about 98%. The results reveal the hybrid fuzzy-GA approach capability to assist computer-based diagnosis of medical experts, and consequently early diagnosis of the disease which is promising for providing suitable treatment for patients and saving more children’s lives. تفاصيل المقالة