فهرس المقالات peiman Keshavarzian


  • المقاله

    1 - High-Speed Ternary Half adder based on GNRFET
    Journal of Nanoanalysis , العدد 4 , السنة 6 , تابستان 2019
    Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semic أکثر
    Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half adder basedon graphene nanoribbon FETs (GNRFETs). Due to reducing chip the area and integrated circuit (IC)interconnects, ternary value logic is a good alternative to binary logic. Extensive simulations have beenperformed in Hspice with 15-nm GNRFET technology to investigate the power consumption and delay.Results show that the proposed design is very high-speed in comparison with carbon nanotube FETs(CNTFETs). The proposed ternary half adder based on GNRFET at 0.9V exhibiting a low power-delayproduct(PDP) of ~10-20 J, which is a high improvement in comparison with the ternary circuits basedon CNTFET, lately proposed in the literature. This proposed ternary half adder can be advantageous incomplex arithmetic circuits. تفاصيل المقالة