فهرس المقالات Mahmoud Shariati


  • المقاله

    1 - Numerical and Experimental Study on Ratcheting Behavior of Steel Cylindrical Shells with/without Cutout Under Cyclic Combined and Axial Loading
    Journal of Solid Mechanics , العدد 4 , السنة 5 , تابستان 2013
    Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subj أکثر
    Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subjected to force-controlled cycling with non-zero mean force, which causes the accumulation of plastic deformation or ratcheting behavior. Numerical analysis was carried out by ABAQUS software using nonlinear isotropic/kinematic hardening model. Numerical results compared to experimental data that was performed by an INSTRON 8802 servo hydraulic machine. Simulations show good agreement between numerical and experimental results. Also, the effect of length, angle of cylindrical shell and existence of cutout are studied with finite element method. Seen, the bending moment plays a strong role in increase of plastic deformation. It is observed that there is more plastic deformation for cylindrical shell under combined loading in comparison to cylindrical shell under uniaxial loading. Ratcheting behavior is sensitive to cutout and showed that creating the cutout increases the plastic deformation. تفاصيل المقالة

  • المقاله

    2 - Ductile Failure and Safety Optimization of Gas Pipeline
    Journal of Solid Mechanics , العدد 5 , السنة 8 , پاییز 2016
    Safety and failure in gas pipelines are very important in gas and petroleum industry. For this reason, it is important to study the effect of different parameters in order to reach the maximum safety in design and application. In this paper, a three dimensional finite e أکثر
    Safety and failure in gas pipelines are very important in gas and petroleum industry. For this reason, it is important to study the effect of different parameters in order to reach the maximum safety in design and application. In this paper, a three dimensional finite element analysis is carried out to study the effect of crack length, crack depth, crack position, internal pressure and pipe thickness on failure mode and safety of API X65 gas pipe. Four levels are considered for each parameter and finite element simulations are carried out by using design of experiments (DOE). Then, multi-objective Taguchi method is conducted in order to minimize x and y coordinates of Failure Assessment Diagram (FAD). So, desired levels that minimize the coordinates and rises the possibility of safety are derived for each parameter. The variation in FAD coordinates according to the changes in each parameter are also found. Finally, comparisons between the optimum design and all other experiments and simulations have shown a good safety situation. It is also concluded that the more design parameters close to optimum levels, the better safety condition will occur in FAD. A verification study is performed on the safety of longitudinal semi-elliptical crack and the results has shown a good agreement between numerical and experimental results. تفاصيل المقالة

  • المقاله

    3 - Investigation of Pre-buckling Stress Effect on Buckling Load Determination of Finite Rectangular Plates with Circular Cutout
    Journal of Solid Mechanics , العدد 5 , السنة 10 , پاییز 2018
    This paper investigates the buckling of finite isotropic rectangular plates with circular cutout under uniaxial and biaxial loading. The complex potential method is used to calculate the pre-buckling stress distribution around the cutout in the plate with finite dimensi أکثر
    This paper investigates the buckling of finite isotropic rectangular plates with circular cutout under uniaxial and biaxial loading. The complex potential method is used to calculate the pre-buckling stress distribution around the cutout in the plate with finite dimensions. To satisfy the in-plane boundary conditions, the generalized complex-potential functions are introduced and a new method based on the boundary integral which has been obtained from the principle of virtual work is used to apply the boundary conditions at the plate edges. The potential energy of the plate is calculated by considering the first order shear deformation theory and the Ritz method is used to calculate the buckling load. The effects of cutout size, type of loading and different boundary conditions on the buckling load are investigated. Comparing of the calculated buckling loads with the finite element results shows the accuracy of the presented method for buckling analysis of the plates. تفاصيل المقالة