فهرس المقالات Banjo Semire


  • المقاله

    1 - Corrosion Inhibition of 5-Methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxyaldehyde on Mild Steel in 1.0 M HCl: Gravimetric Method and DFT Study.
    Journal of Physical & Theoretical Chemistry , العدد 2 , السنة 14 , زمستان 2017
    The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3L أکثر
    The study examined corrosion inhibition of corrosion inhibition of 5-methyl-2H-imidazol-4-carboxaldehyde and 1H-Indole-3-carboxaldehyde on mild steel in acidic medium using weight loss and Density Functional Theory (DFT) methods. DFT calculations were carried out at B3LYP/6-31+G** level of theory in aqueous medium on the molecular structures to describe electronic parameters. The values of thermodynamic parameters such as free energy of adsorption (ΔGºads), adsorption equilibrium constant (Kads), adsorption entropy (ΔSºads), adsorption enthalpy (ΔHºads) and activation energy (Ea) were calculated, analyzed and discussed. The adsorption process on mild steel surface showed that 4-methylimidazol-5-carboxaldehyde and Indole-3-carboxaldehyde obeyed Freundlich and Temkin adsorption isotherms respectively. Also, the molecular parameters associated with inhibition efficiency such as EHOMO, ELUMO, band gap energy (ELUMO- EHOMO), softness (S), electron affinity (EA) and number of electrons transfer were calculated. The higher inhibitory property of 5-methyl-2H-imidazol-4-carboxaldehyde was attributed to the presence of higher number of protonation sites as a result of higher number of nitrogen atoms, increase in number of plane protonated species and higher net charges on the ring atoms. تفاصيل المقالة

  • المقاله

    2 - Quantum-Chemical and Solvatochromic analysis of solvent effects on the Electronic Absorption Spectra of Some Benzodiazepine Derivatives
    Journal of Physical & Theoretical Chemistry , العدد 1 , السنة 14 , پاییز 2018
    ABSTRACT The solvatochromic behaviour of two ketonic derivatives of benzodiazepine namely 7-chloro-1-methyl-5-phenyl-1,5-benzodiazepine-2,4-dione (Clobazam®) and 5,(2-chlorophenyl)-7-nitro-2,3-dihydro-1,4-benzodiazepine-2-one (Clonazepam®) were analysed in some أکثر
    ABSTRACT The solvatochromic behaviour of two ketonic derivatives of benzodiazepine namely 7-chloro-1-methyl-5-phenyl-1,5-benzodiazepine-2,4-dione (Clobazam®) and 5,(2-chlorophenyl)-7-nitro-2,3-dihydro-1,4-benzodiazepine-2-one (Clonazepam®) were analysed in some selected solvents of different polarities using UV-Visible spectroscopy and DFT computational techniques. The solute-solvent interactions were evaluated by means of Kamlet-Taft’s Linear Solvation Energy Relationship (LSER) concept. The results show that electronic absorption properties of the compounds depend on the solvent polarity and both specific and non-specific interactions between solute and solvent. Also, the spectral properties show satisfactory correlation with solvatochromic parameters (α, β and π). The plot of ῡmax calculated against ῡmax observed in the representative solvents gives a good linear regression value of R2=0.998.The results of Frontier Orbital calculations showing the differences between HOMO and LUMO of the ground states and various excited states of Clobazam® and Clonazepam® are -5.15eV and -4.20eV respectively and both are in good agreement with the most important transitions observed in the two compounds. تفاصيل المقالة