مدیریت توان راکتیو در شبکههای توزیع فشار ضعیف با استفاده از قابلیت و اضافه ظرفیت اینورترهای هوشمند منابع فتوولتائیک
الموضوعات :سعید سوری 1 , حسین محمدنژاد شورکائی 2 , سودابه سلیمانی مورچه خورتی 3 , سیدبابک مظفری 4
1 - دانشکده مکانیک، برق و کامپیوتر - واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده مکانیک، برق و کامپیوتر - واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشکده مکانیک، برق و کامپیوتر - واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - دانشکده مکانیک، برق و کامپیوتر - واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
الکلمات المفتاحية: توان راکتیو, خازن, اینورتر فتوولتائیک, شبکههای توزیع,
ملخص المقالة :
: از آنجایی که ادغام منابع فتوولتائیک (PV) خورشیدی در شبکه توزیع فشار ضعیف در سالهای اخیر به سرعت رو به افزایش است، استفاده از قابلیت اینورترهای منابع فتوولتائیک میتواند فرصتی برای بهبود شاخصهای فنی و اقتصادی از طریق مدیریت توان راکتیو در شبکههای توزیع ولتاژ پایین باشد. این مقاله جهت بهبود افت ولتاژ و افزایش درآمد ناشی از فروش برق، با استفاده از قابلیت اینورتر PV و خازن ثابت، مدل بهینه ای برای مدیریت توان راکتیو پیشنهاد میکند. در این روش ظرفیت بهینه اینورتر PV همزمان با مکان و تعداد خازن ثابت مشخص می شود تا سرمایهگذاری برای اینورتر PV، خازن ثابت و هزینه عملیاتی حداقل و درآمد فروش برق حداکثر گردد. در این راستا، طول عمر و هزینه اضافه ظرفیت اینورتر PV، جهت ارزیابی فنی و اقتصادی سالانه لحاظ میگردد. در این مطالعه معادلات پخش بار همراه با محدودیتهای فنی در یک مدل برنامهریزی مخروطی مرتبه دوم ادغام شدهاند. دو شبکه توزیع فشار ضعیف با دیتاهای واقعی و با استفاده (کدنویسی) از نرم افزار متلب به منظور نشان دادن اثر بخشی مدل پیشنهادی شبیه سازی شده است. مقایسه روش پیشنهادی مدیریت توان راکتیو با روشهای مرسوم، تغیرات قابل توجه مطلوبی، برای سرمایهگذاری، هزینه تلفات انرژی، بهبود شاخص انحراف ولتاژ و درآمد فروش برق را نشان میدهد.
[1] T. Khalili, A. Jafari, S.M.S. Kalajahi, B. Mohammadi-Ivatloo, A. Bidram, "Simultaneous demand response program and conservation voltage reduction for optimal operation of distribution systems",Proceeding of the IEEE/IAS, pp. 1-8, Detroit, MI, USA, Oct. 2020 (doi: 10.1109/IAS44978.2020.9334720).
[2] Q. Zhang, K. Dehghanpour, Z. Wang, "Distributed CVR in unbalanced distribution systems with PV penetration", IEEE Trans. on Smart Grid, vol. 10, no. 5, pp. 5308-5319, Sept. 2019 (doi: 10.1109/TSG.2018.2880419).
[3] T.S. Vitor, J.C.M. Vieira, "Operation planning and decision-making approaches for volt/var multi-objective optimization in power distribution systems", Electric Power Systems Research, vol. 191, Article Number: 106874, Oct. Feb. 2021 (doi: 10.1016/j.epsr.2020.106874).
[4] S. Souri, H.M. Shourkaei, S. Soleymani, B. Mozafari, "Flexible reactive power management using PV inverter overrating capabilities and fixed capacitor", Electric Power Systems Research, vol. 209, Article Number: 107927, Aug. 2022 (doi: 10.1016/j.epsr.2022.107927).
[5] M. Vygoder, G. Oriti, J. Gudex, T. M. Tencate, A.L. Julian, R. Cuzner, "Comparison of voltage abnormality detection methods for single-phase inverters to meet the requirements in IEEE Standard 1547-2018", IEEE Trans. on Industry Applications, vol. 57, no. 5, pp. 4981-4990, Sept./Oct. 2021 (doi: 10.1109/TIA.2021.3086054).
[6] S.X. Chen, Y.F. Eddy, H.B. Gooi, M.Q. Wang, S.F. Lu, "A centralized reactive power compensation system for LV distribution networks", IEEE Trans. on Power Systems, vol. 30, no. 1, pp. 274-284, Jan. 2015 (doi: 10.1109/TPWRS.2014.2326520).
[7] Á. Molina-García, R.A. Mastromauro, T. García-Sánchez, S. Pugliese, M. Liserre, S. Stasi, "Reactive power flow control for PV inverters voltage support in LV distribution networks", IEEE Trans. on Smart Grid, vol. 8, no. 1, pp. 447-456, Jan. 2017 (doi: 10.1109/TSG.2016.2625314).
[8] O. Gandhi, W. Zhang, C.D. Rodríguez-Gallegos, H. Verbois, H. Sun, T. Reindl, D. Srinivasan, "Local reactive power dispatch optimisation minimising global objectives", Applied Energy, vol. 262, Article Number: 114529, March 2020 (doi: 10.1016/j.apenergy.2020.114529).
[9] K.A. Horowitz, A. Jain, F. Ding, B. Mather, B. Palmintier, "A techno-economic comparison of traditional upgrades, volt-var controls, and coordinated distributed energy resource management systems for integration of distributed photovoltaic resources", International Journal of Electrical Power and Energy Systems, vol. 123, Article Number: 106222, Dec. 2020 (doi: 10.1016/j.ijepes.2020.106222).
[10] D. Cañadillas, H. Valizadeh, J. Kleissl, B. González‐Díaz, R. Guerrero‐Lemus, "EDA‐based optimized global control for PV inverters in distribution grids", IET Renewable Power Generation, vol. 15, no. 2, pp. 382-396, Feb. 2021 (doi: 10.1049/rpg2.12031).
[11] M.L. Kolhe, M. Rasul, "3-Phase grid-connected building integrated photovoltaic system with reactive power control capability", Renewable Energy, vol. 15, pp. 382-396, July 2020 (doi: 10.1049/rpg2.12031).
[12] J.F. Sousa, C.L. Borges, J. Mitra, "PV hosting capacity of LV distribution networks using smart inverters and storage systems: a practical margin", IET Renewable Power Generation, vol. 14, no. 8, pp. 1332-1339, June 2020 (doi: 10.1049/iet-rpg.2019.1054).
[13] M.S.S. Abad, J. Ma, "Photovoltaic hosting capacity sensitivity to active distribution network management", IEEE Trans. on Power Systems, vol. 36, no. 1, pp. 107-117, Jan. 2021 (doi: 10.1109/TPWRS.2020.3007997).
[14] A.M. Nour, A.Y. Hatata, A.A. Helal, M.M. El-Saadawi, "Review on voltage-violation mitigation techniques of distribution networks with distributed rooftop PV systems", IET Generation, Transmission & Distribution, vol. 14, no. 3, pp. 349-361, Feb 2020 (doi: /10.1049/iet-gtd.2019.0851).
[15] F. Sayadi, S. Esmaeili, F. Keynia, "Two-layer volt/var/total harmonic distortion control in distribution network based on PVs output and load forecast", IET Generation, Transmission & Distribution, vol. 11, n. 8, pp. 2130-2137, Jul 2017 (doi: 10.1049/iet-gtd.2016.1440).
[16] S. Alkaabi, H. Zeineldin, V. Khadkikar, "Short-term reactive power planning to minimize cost of energy losses considering PV systems", IEEE Trans. on Smart Grid, vol. 10, no. 3, pp. 2923-2935, May 2019 (doi: 10.1109/TSG.2018.2815434).
[17] A. Ali, K. Mahmoud, D. Raisz, M. Lehtonen, "Probabilistic approach for hosting high PV penetration in distribution systems via optimal oversized Inverter with watt-var functions", IEEE Systems Journal, vol. 15, no. 1, pp. 684-693, March 2021 (doi: 10.1109/JSYST.2020.2982467).
[18] A. Cagnano, E. De Tuglie, M. Liserre, R.A. Mastromauro, "Online optimal reactive power control strategy of PV inverters", IEEE Trans. on Industrial Electronics, vol. 58, no. 10, pp. 4549-4558, Oct. 2011 (doi: 10.1109/TIE.2011.2116757).
[19] O. Gandhi, C.D. Rodríguez-Gallegos, N.B.Y. Gorla, M. Bieri, T. Reindl, D. Srinivasan, "Reactive power cost from PV inverters considering Inverter lifetime assessment", IEEE Trans. on Sustainable Energy, vol. 10, no. 2, pp. 738-747, April 2019 (doi: 10.1109/TSTE.2018.2846544).
[20] A. Ciocia, V.A. Boicea, G. Chicco, P. Di Leo, A. Mazza, E. Pons, F. Spertino, N. Hadj-Said, "Voltage control in low-voltage grids using distributed photovoltaic converters and centralized devices", IEEE Trans. on Industry Applications, vol. 55, no. 1, pp. 225-237, Jan.-Feb 2019 (doi: 10.1109/TIA.2018.2869104).
[21] P.P. Vergara, M. Salazar, T.T. Mai, P.H. Nguyen, H. Slootweg, "A comprehensive assessment of PV inverters operating with droop control for overvoltage mitigation in LV distribution networks", Renewable Energy, vol.159, no. 1, pp. 172-183, October 2020 ( doi: 10.1016/j.renene.2020.05.151).
[22] B. Wei, Z. Qiu, G. Deconinck, "A mean-field voltage control approach for active distribution networks with uncertainties", IEEE Trans. on Smart Grid, vol. 12, no. 2, pp. 1455-1466, March 2021 (doi: 10.1109/TSG.2020.3033702).
[23] M. Kamali, B. Fani, G. Shahgholian, G.B. Gharehpetian, M. Shafiee, "Harmonic compensation and micro-grid voltage and frequency control based on power proportional distribution with adaptive virtual impedance method", Journal of Intelligent Procedures in Electrical Technology, vol. 14, no. 53, pp. 33-60, June 2023 (in Persian) (dor: 20.1001.1.23223871.1402.14.53.3.7).
[24] M. Klerx, J. Morren, H. Slootweg, "Advanced replacement strategies for low voltage distribution grids", IET generation, transmission & distribution, vol. 15, no.17, pp. 2460-2472, April 2021 (doi: 10.1049/gtd2.12190).
[25] S. Hashemi, J. Østergaard, T. Degner, R. Brandl, W. Heckmann, "Efficient control of active transformers for increasing the PV hosting capacity of LV grids", IEEE Trans. on Industrial Informatics, vol. 13, no. 1, pp. 270-277, Feb. 2017 (doi: 10.1109/TII.2016.2619065).
[26] X. Xu, J. Li, Z. Xu, J. Zhao, C.S. Lai," Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks", Applied Energy, vol. 238, pp. 952-962, March 2019 (doi: 10.1016/j.apenergy.2019.01.135)
[27] A.M. Shaheen, R.A. El-Sehiemy, S.M. Farrag, "Adequate planning of shunt power capacitors involving transformer capacity release benefit", IEEE Systems Journal, vol. 12, no. 1, pp. 373-382, March 2018 (doi: 10.1109/JSYST.2015.2491966).
[28] R.A. Jabr, "Robust volt/var control with photovoltaics", IEEE Trans. on Power Systems, vol. 34, no. 3, pp. 2401-2408, May 2019 (doi: 10.1109/TPWRS.2018.289076).
[29] O. Gandhi, C.D. Rodríguez-Gallegos, W. Zhang, D. Srinivasan, T. Reindl, "Economic and technical analysis of reactive power provision from distributed energy resources in microgrids", Applied energy, vol. 210, pp. 827-841, Jan 2018, ( doi: 10.1016/j.apenergy.2017.08.154).
[30] S. Hashemi, J. Østergaard, "Methods and strategies for overvoltage prevention in low voltage distribution systems with PV", IET Renewable power generation, vol. 11, no. 2, pp. 205-214, Jan 2017 (doi: 10.1049/iet-rpg.2016.0277).
[31] D.-L. Schultis, A. Ilo, C. Schirmer, "Overall performance evaluation of reactive power control strategies in low voltage grids with high prosumer share", Electric Power Systems Research, vol.168, pp. 336-349, March 2019 (doi: 10.1016/j.epsr.2018.12.015).
[32] A. Ali, D. Raisz, K. Mahmoud, "Optimal oversizing of utility-owned renewable DG inverter for voltage rise prevention in MV distribution systems", International Journal of Electrical Power & Energy Systems, vol. 105, pp. 500-513, February 2019 (doi: 10.1016/j.ijepes.2018.08.040).
[33] W. Wei, J. Wang, N. Li, S. Mei, "Optimal power flow of radial networks and its variations: A sequential convex optimization approach", IEEE Trans. on Smart Grid, vol. 8, no. 6, pp. 2974-2987, Nov. 2017 (doi: 10.1109/TSG.2017.2684183).
[34] S. Zeynali, N. Rostami, M. Feyzi, "Multi-objective optimal short-term planning of renewable distributed generations and capacitor banks in power system considering different uncertainties including plug-in electric vehicles", International Journal of Electrical Power & Energy Systems, vol. 119, Article Number: 105885, July 2020 (doi: 10.1016/j.ijepes.2020.105885).
[35] Q. Chai, C. Zhang, Z.Y. Dong, Y. Xu, "Operational reliability assessment of photovoltaic inverters considering voltage/VAR control function", Electric Power Systems Research, vol. 190, Article Number: 106706, Jan 2021 (doi: 10.1016/j.epsr.2020.106706).
[36] T. Stetz, J. Von Appen, M. Braun, G. Wirth, "Cost-optimal inverter sizing for ancillary services- Field experience in Germany and future considerations", Proceeding of the EPSEC, pp. 3069-3074, 2011.
_||_