Optical and Electrical Properties of Quantum Nano Ring at the Presence of Rasha Spin-orbit Interaction
الموضوعات :Elmira Dehghan 1 , Azadeh Sadat Naeimi 2 , Davod Sanavi Khoshnoud 3
1 - Department of Physics, Semnan University, Semnan , Iran
2 - Department of Physics, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
3 - Department of Physics, Semnan University, Semnan , Iran
الکلمات المفتاحية: optical properties, Quantum ring, Rashba spin-orbit interaction, persistent spin, gate response,
ملخص المقالة :
The significant information about the properties of matter can be described with the interaction between light and matter. On this subject, the effect of the applied magnetic field and structural variation on the optical and electrical properties of circular GaAs quantum rings at the existence of Rashba spin–orbit interaction (RSOI) have been investigated. Also the effect of Rashba spin-orbit interaction (SOI) on the gate response in a series of non-interacting one-dimensional rings connected to some leads are studied theoretically within the waveguide theory. The presence and absence of Rashba SOI is treated as the two inputs of the AND/NAND/NOT gates. Additionally the linear and nonlinear optical absorption coefficient (AC) and refractive index changes (RIC) are calculated by the density matrix.
[1] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Martyi, T. M. Moore, and A. E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure, Phys. Rev. Lett. 60 (1988) 535.
[2] J. H. Davies, The physics of low-dimensional semiconductors: an introduction, Cambridge university press, (1998).
[3] S. E. Harris, Y. Yamamoto, Photon Switching by Quantum Interference, Phys. Rev. Lett. 81 (1998) 3611.
[4] J. Clarke, H. Chen, and W. A. van Wijngaarden, Electromagnetically induced transparency and optical switching in a rubidium cascade system, Appl. Opt. 40 (2001) 2047.
[5] A. Andr´e, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, Quantum control of light using electromagnetically induced transparency, J. Phys. B: At. Mol. Opt. Phys. 38 (2005) 589..
[6] M. Sahrai, M. Mahmoudi, The effect of an incoherent pumping on the dispersive and absorptive properties of a four-level medium, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 185501.
[7] S. M. Mousavi, L. Safari, M. Mahmoudi and M. Sahrai, Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition, J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 165501.
[8] Y. Gu, L. Wang, K. Wang, C. Yang and Q. Gong, Coherent population trapping and electromagnetically induced transparency in a five-level M-type atom, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 463.
[9] Z. Zhang, Y. Huang, P. J. Reece, Influence of GaAsSb structural properties on the optical properties of InAs/GaAsSb quantum dots, Phys. E (Amsterdam, Neth.) 94 (2017) 7.
[10] A. Zamani, F. setareh, T. Azargoshasb, Spin-orbit coupling and applied magnetic field effects on electromagnetically induced transparency of a quantum ring at finite temperature, Superlattices Microstruct. 115 (2018) 40.
[11] G. Rezaei, S. S kish, B. vaseghi, Electromagnetically induced transparency in a two-dimensional quantum dot: Effects of impurity, external fields, hydrostatic pressure and temperature, Phys. E (Amsterdam, Neth.) 62 (2014) 104.
[12] A. S. Jahromi, G. Rezaei, Electromagnetically induced transparency in a two-dimensional quantum pseudo-dot system: Effects of geometrical size and external magnetic field, Phys. B: Condens. Matter 456 (2015) 103.
[13] H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors: Fivth Edition. World Scientific Publishing Company, 2009.chapter 22
[14] S. Liang, W. Xie, A. H. sarkisyan, Electronic and optical properties of a nanoring in the presence of external magnetic field, Superlattices Microstruct, 51.6 (2012) 868.
[15] C. Sirtori, F. Capasso, D. L. Civco, Phys. Rev. Lett, 68 (1992) 1010.
[16] S. Sauvage, P. Boucaud, F. Glotin,Third-harmonic generation in InAs/GaAs self-assembled quantum dots, Phys. Rev. B 59.15 (1999) 9830.
[17] G. Rezaei, S. Shojaeian Kish, Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields, Superlattices Microstruct 53 (2013) 99.
[18] S. Liang, W. Xie, H. Shen, Optical properties in a two-dimensional quantum ring: Confinement potential and Aharonov–Bohm effect, Opt. Commun, 284.24 (2011) 5818.
[19] S. Gumber, M. Gambhir, P. K. Jha, Optical response of a two dimensional quantum ring in presence of Rashba spin orbit coupling, J. Appl. Phys. 119.7 (2016) 073101.
[20] Kh. Shakouri, B. Szafran, M. Esmaeilzadeh and F. M. Peeters, Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings, Phys. Rev. B 85 (2012) 165314.
[21] G.A. Intronati,P. I. Tamborenea, D. Weinmann, R. A. Jalabert, Spin-orbit effects in nanowire-based wurtzite semiconductor quantum dots. Phys. Rev. B 88(4) (2013). 045303.
[22] D. Y. Liu, J. Xia, Spin flip in single quantum ring with Rashba spin–orbit interation. Chin. Phys. B. 27.3 (2018) 037201.
[23] A. Zamani, T. Azargoshasb, E. Niknam, Second and third harmonic generations of a quantum ring with Rashba and Dresselhaus spin-orbit couplings: Temperature and Zeeman effects, Phys. B: Condens. Matter. 523 (2017) 85.
[24]A. Zamani, Th. Estabar, Gh. Safarpour and M. Moradi, The binding energies of a bulged GaAs nanowire, Superlattices Microstruct. 76 (2014) 66.
[25]A. Zamani, Gh. Safarpour, L. Safaei, E. Niknam and M. Novzari, The linear and nonlinear optical properties of a bulged GaAs nanowire, Superlattices Microstruct. 81 (2015)129.
[26] J. D. Cooper, A. Valavanis, Z. Ikonic, P. Harrison and J. E. Cunningham, Finite difference method for solving the Schrödinger equation with band nonparabolicity in mid-infrared quantum cascade lasers, J. Appl. Phys. 108 (2010) 113109.
[27] I. Wayan Sudiarta, D. J. Wallace Geldart, Solving the Schrödinger equation using the finite difference time domain method, J. Phys. A: Math. Theor. 40 (2007) 1885.
[28]G. M. Amiraliyev, The convergence of a finite difference method on layer-adapted mesh for a singularly perturbed system, A. Math. Comput. 162 (2005) 102.
[29] G. Rezaei, Z. Mousazadeh, and B. Vaseghi, Nonlinear optical properties of a two-dimensional elliptic quantum dot, Phys. E (Amsterdam, Neth.). 42.5 (2010) 1477.
[30] E. Kasapoglu, C. A. Duque, M. E. Mora-Ramos, The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga1− xAlxAs/GaAs quantum dot under applied electric field, Phys. B: Condens. Matter. 474 (2015) 15.