DFT comparison of structural and electronic properties of (5, 0) zig-zag GaAs nanotube and (5, 0) zig-zag GaSb nanotube
Monir Kamalian
1
(
Department of Physics, Yadegar-e-Imam Khomeini (RAH) shahre rey Branch, Islamic Azad University, 1815163111, Tehran, Iran
)
الکلمات المفتاحية: DFT, NDR, Gallium Arsenide nanotube, Gallium Antimonide nanotube, I-V character,
ملخص المقالة :
The structural, electronic and transport properties of the (5, 0) zig-zag GaAs nanotube and (5, 0) zig-zag GaSb nanotube have been studied using Density Functional Theory (DFT) combined with Non-Equilibrium Green’s Function (NEGF) formalism with TranSIESTA software. The electronic band structure (EBS), density of states (DOS), band gap (BG), current-voltage (I-V) characteristics and quantum conductance curves (dI/dV) of these two structures were studied under low-bias conditions. The obtained results demonstrate that these two structures exhibit semiconducting behaviour but the (5, 0) zig-zag GaSb nanotube has a smaller band gap and the highest value of the electron density of states, hence it is an important candidate in the field of infrared-radiation detectors, resonant tunnelling devices and laser diodes. Instead the (5, 0) zig-zag GaAs nanotube showed the amazing property of Negative Differential Resistance (NDR) that it has played a vital role in high frequency oscillators, reflection amplifiers, memories and switching devices